会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 72. 发明授权
    • Near-offset extrapolation for free-surface multiple elimination in shallow marine environment
    • 在浅海洋环境中进行自由表面多次消除的近偏移外推法
    • US09170345B2
    • 2015-10-27
    • US13533628
    • 2012-06-26
    • Mamadou S. DialloWarren S. Ross
    • Mamadou S. DialloWarren S. Ross
    • G01V1/36
    • G01V1/36G01V2210/1423G01V2210/244G01V2210/56G01V2210/57
    • The invention is a method for extrapolating missing near-offset seismic data (101) so that the data may be used, for example, in SRME or another multiple-reflection elimination method. The invention uses the reciprocity principle (102) to relate two seismic states (acoustic or elastic) that can occur in a time-invariant, bounded domain in space. One of these states represents the physical experiment for the acquisition of the actual seismic data where near-offset traces are missing, and the other state represents a synthetic experiment with no missing near offset traces, computer-generated on a much simpler earth model. The reciprocity relationship used to relate these two states is iteratively inverted for the missing near-offset traces (103), preferably using only part of the synthetic data (102) so as to reduce inversion artifacts. The reference model acts as a constraint on the near-offset extrapolation.
    • 本发明是用于外推丢失的近偏移地震数据(101)的方法,使得数据可以用于例如SRME或另一种多重反射消除方法。 本发明使用互惠原理(102)来描述可以在空间中的时不变的有界域中发生的两个地震状态(声学或弹性)。 这些状态中的一个代表用于采集近偏移轨迹缺失的实际地震数据的物理实验,另一个状态表示没有丢失近偏移轨迹的合成实验,在更简单的地球模型上计算机生成。 用于关联这两个状态的互易关系对于缺失的近偏移轨迹(103)被迭代地反转,优选仅使用合成数据(102)的一部分,以便减少反转伪像。 参考模型作为近偏移外推的约束。
    • 75. 发明授权
    • Underseas seismic acquisition
    • 海底地震采集
    • US09081119B2
    • 2015-07-14
    • US12669734
    • 2008-07-09
    • Michael W NorrisMarvin L Johnson
    • Michael W NorrisMarvin L Johnson
    • G01V1/38
    • G01V1/3808
    • The described invention relates to a method for acquiring seismic data in icy waters comprising positioning a fixed structure or movable vessel (102) at or near an established water opening; deploying into the water opening, from said structure or vessel one or more ROV or AUV units (104), said ROV or AUV units remaining connected to said structure or vessel; operating the one or more ROV or AUV units to deploy seismic sensors recording equipment (106) and/or one or more seismic source equipment (108) on or near the water bottom; generating and applying control signals to one or more of the more ROV or AUV units to generate and to record seismic signals (110); operating the one or more ROV or AUV units on the water bottom to move (114) and/or recover (116) the seismic source equipment and/or seismic sensors recording.
    • 所描述的本发明涉及一种用于在冰水中采集地震数据的方法,包括在已建立的水开口处或附近定位固定结构或可移动容器(102) 从所述结构或容器部署到所述开水口中的一个或多个ROV或AUV单元(104),所述ROV或AUV单元保持连接到所述结构或容器; 操作一个或多个ROV或AUV单元以在水底部上或附近部署地震传感器记录设备(106)和/或一个或多个地震源设备(108); 产生和施加控制信号到一个或多个更多的ROV或AUV单元以产生和记录地震信号(110); 操作水底上的一个或多个ROV或AUV单元以移动(114)和/或恢复(116)震源设备和/或地震传感器记录。
    • 77. 发明授权
    • Flexible and adaptive formulations for complex reservoir simulations
    • 用于复杂油藏模拟的灵活和适应性配方
    • US09058446B2
    • 2015-06-16
    • US13812828
    • 2011-06-29
    • Pengbo LuBret L. Beckner
    • Pengbo LuBret L. Beckner
    • G06G7/48G06F17/50G01V11/00E21B49/00G06F17/11
    • G06F17/5009E21B49/00G01V11/00G06F17/11
    • A method for performing a simulation of a subsurface hydrocarbon reservoir is disclosed. Each cell in a reservoir model has an equation set representing a reservoir property. A stability limit is determined for each cell. Each cell is assigned to an explicit or implicit formulation. A solution to the system of equations is solved for using an initial guess and an explicit or implicit formulation. A stability limit is calculated for the converged cells. When the number of unconverged cells is greater than a predetermined amount, a reduced nonlinear system is constructed with a list of unconverged cells. The reduced nonlinear system is solved with the implicit formulation, and other cells are solved with the explicit formulation. Parts of the method are repeated until all equation sets satisfy a convergence criterion and a stability criterion, and the solved solution is output.
    • 公开了一种用于进行地下油藏的模拟的方法。 储层模型中的每个单元都具有表示储层性质的方程组。 确定每个电池的稳定性极限。 每个单元格被分配给一个明确或隐含的公式。 解决方程组的解决方案是使用初始猜测和明确或隐含的公式。 计算收敛细胞的稳定性极限。 当未折合单元的数量大于预定量时,用未折合单元列表构造一个简化的非线性系统。 通过隐式公式解决了非线性系统的简化,并用明确的公式解决了其他单元。 重复该方法的部分,直到所有方程组满足收敛标准和稳定性准则,并输出求解的解。
    • 78. 发明授权
    • Iterative reservoir surveillance
    • 迭代油藏监测
    • US09026417B2
    • 2015-05-05
    • US12738948
    • 2008-10-20
    • Jose J. Sequeira, Jr.Yao-Chou Cheng
    • Jose J. Sequeira, Jr.Yao-Chou Cheng
    • G06G7/48G01V99/00E21B41/00
    • G01V99/00E21B41/00
    • Method for reservoir surveillance using a three-dimensional Earth Model (101) to improve and expedite the surveillance at all scales of investigation (field, reservoir, fault compartment, and individual well) and at all time steps (minutes, hours, days, months, years). The new method allows users to rapidly identify anomalous field and well performance (109) and provides capability to investigate root causes of the performance deviation from predicted (110). Animated co-rendered displays (107) of the earth model and actual (104) and simulated (105) production data enable the user to interactively determine model adjustments back at the basic level of the Earth Model, which are then propagated to a geologic model (102) and then to the reservoir simulator (103) to update it (111) in a physically constrained way.
    • 使用三维地球模型(101)进行水库监视的方法,以改进和加快所有调查范围(田间,水库,断层和个体井)的监视情况,以及所有时间步骤(分钟,小时,天数,月份) ,年)。 新方法允许用户快速识别异常场和井的性能(109),并提供对预测性能偏差的根本原因(110)的能力。 地球模型的动画共同渲染显示(107)和实际(104)和模拟(105)生产数据使得用户能够在地球模型的基本水平上交互地确定模型调整,然后将其传播到地质模型 (102),然后到储层模拟器(103)以物理约束的方式对其进行更新(111)。
    • 80. 发明授权
    • Inversion of 4D seismic data
    • 4D地震数据的反演
    • US08908474B2
    • 2014-12-09
    • US12593475
    • 2008-03-24
    • Dez ChuGrant A. Gist
    • Dez ChuGrant A. Gist
    • G01V1/28G01V11/00
    • G01V11/00G01V2210/665
    • The invention is a method for inferring the saturation and pressure change of a reservoir by combining the information from 4D (time-lapse) seismic and time lag data volumes (7) derived from the 4D seismic, well logs (4), and reservoir simulation results (when simulator results are available) and featuring one or more 4D well ties (1) for a quantitative 4D interpretation. The inventive method uses model-based inversion incorporating rock physics (2) at well locations (5), and is statistical-based (6) away from wells. The method thus allows integration (8) of rock physics model and reservoir simulation and honors 4D seismic change.
    • 本发明是通过组合来自4D(延时)地震的信息和从4D地震,测井(4)和储层模拟得到的时滞数据体积(7)来推断储层的饱和和压力变化的方法 结果(当模拟器结果可用时),并具有一个或多个4D井架(1)用于定量4D解释。 本发明的方法使用基于岩石物理学(2)的基于模型的反演在井位置(5),并且与井相比基于统计学(6)。 因此,该方法允许岩石物理模型和油藏模拟的综合(8)和荣誉4D地震变化。