会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 63. 发明授权
    • Apparatus for sensing lead and transthoracic impedances
    • US5020541A
    • 1991-06-04
    • US464348
    • 1990-01-12
    • Arthur R. Marriott
    • Arthur R. Marriott
    • A61B5/0424A61B5/053
    • A61B5/0535A61B5/0424
    • A method and apparatus for use with medical electrode systems that sense the integrity of lead connections and patient transthoracic impedance is provided. In an ECG electrode application, a carrier circuit (12) produces two carrier signals (S.sub.C1 and S.sub.C2) that are out of phase with each other. The S.sub.C1 signal is applied to an RA lead through a terminating impedance (Z1). The S.sub.C2 signal is applied to LA, LL and V leads through terminating impedances (Z2, Z3, and Z4). Each of the S.sub.C1 and S.sub.C2 carrier signals comprises a lead impedance frequency component (S.sub.LI) and an impedance respiration frequency component (S.sub.IR). First stage amplifiers (A1, A2, and A3) located in an ECG preamplifier (13) amplify the difference between a lead voltage on the RA lead (V.sub.RA) and lead voltages on the LA, LL, and V leads (V.sub.LA, V.sub.LL and V.sub.V). High pass filters (F1, F2 and F3) remove patient ECG signals from the outputs of A1, A2 and A3 to produce first stage output voltages (V.sub.1, V.sub.2 and V.sub.5). The V.sub.1, V.sub.2 and V.sub.5 voltages are demodulated by a demodulator circuit (18). Lead impedance demodulators (DM1, DM2 and DM3) are clocked by a lead impedance control signal (S.sub.A) that has the same frequency as the S.sub.LI component so that the outputs of DM1, DM2 and DM3 are lead impedance-related voltages (V.sub.L1, V.sub.L2 and V.sub.L5). V.sub.2 is also demodulated by an impedance respiration demodulator (DM4). DM4 is clocked by an impedance respiration control signal (S.sub.B) that has the same frequency as the S.sub.IR component so that the output of DM4 is a transthoracic impedance-related voltage V.sub.T. V.sub.T is amplified by an operational amplifier (OA10) to produce an impedance respiration-related voltage (V.sub.R). The ECG preamplifier (13) and the demodulator circuit (18) include fast DC restoration circuits (66, 68, 70 and 71) that use switched capacitor integrators (76) to restore ECG outputs (V.sub.E1, V.sub.E2, and V.sub.E5) and the V.sub.R voltage to nominal values when a DC offset has occurred.
    • 64. 发明授权
    • Method and apparatus for differential lead impedance comparison
    • 差分引线阻抗比较的方法和装置
    • US4993423A
    • 1991-02-19
    • US464380
    • 1990-01-12
    • John R. Stice
    • John R. Stice
    • A61B5/0424G01R17/10
    • A61B5/0424G01R17/105
    • A differential lead impedance comparison apparatus (10) senses lead impedance and compensates for patient-to-patient and electrode variability. A bridge circuit (12) is connected to one end of electrode conductors (22, 24 and 26) in an ECG Leads I configuration. The other end of the conductors (22, 24 and 26) are connected to a patient (18) via electrodes (RA, LA and LL). Leads formed in part by RA, LA and LL and the respective conductors (22, 24 and 26) have lead impedances (R.sub.b, R.sub.a, and R.sub.c). Constant current sources (11, 12 and 13) are connected to the conductors (22, 24 and 26) and supply constant AC currents (I.sub.1, I.sub.2 and I.sub.3). A first bridge output voltage (V.sub.M) is produced by I.sub.1 and a combination 32 of R.sub.a, R.sub.b, and R.sub.c. A second bridge output voltage (V.sub.P) is produced by I.sub.2 and a combination 34 of R.sub.a, R.sub.b, and R.sub.c. A differential amplifier circuit (14) differentially amplifies the V.sub.M and V.sub.P voltages to produce differential voltages (V.sub.OM and V.sub.OP). Demodulators (DM1 and DM2) demodulate V.sub.OM and V.sub.OP to produce differential impedance voltages (V.sub.1M and V.sub.1P). A first comparator (OA3) changes states and produces a high logic output when V.sub.1M equals or exceeds a first threshold level (V.sub.TH1). A second comparator (OA4) changes states and produces a high logic output when V.sub.1P equals or exceeds a second threshold level (V.sub.TH2). An exclusive OR gate (G1) produces a high logic output (V.sub.OUT) when one and only one of OA3 or OA4 produce a high logic output.
    • 差分引线阻抗比较装置(10)感测引线阻抗并补偿患者与患者和电极的变异性。 桥接电路(12)以ECG引线I配置连接到电极导体(22,24和26)的一端。 导体(22,24和26)的另一端通过电极(RA,LA和LL)连接到患者(18)。 由RA,LA和LL部分形成的引线和相应的导体(22,24和26)具有引线阻抗(Rb,Ra和Rc)。 恒流源(11,12和13)连接到导体(22,24和26),并提供恒定的交流电流(I1,I2和I3)。 第一桥输出电压(VM)由I1和Ra,Rb和Rc的组合32产生。 第二桥输出电压(VP)由I2和Ra,Rb和Rc的组合34产生。 差分放大器电路(14)差分地放大VM和VP电压以产生差分电压(VOM和VOP)。 解调器(DM1和DM2)解调VOM和VOP以产生差分阻抗电压(V1M和V1P)。 当V1M等于或超过第一阈值电平(VTH1)时,第一比较器(OA3)改变状态并产生高逻辑输出。 当V1P等于或超过第二阈值电平(VTH2)时,第二比较器(OA4)改变状态并产生高逻辑输出。 当OA3或OA4中只有一个产生高逻辑输出时,异或门(G1)产生高逻辑输出(VOUT)。
    • 66. 发明授权
    • Magnetically coupled isolation interface circuit
    • 磁耦合隔离接口电路
    • US4338951A
    • 1982-07-13
    • US179614
    • 1980-08-19
    • Thomas V. Saliga
    • Thomas V. Saliga
    • A61B5/0424A61B5/0476A61B5/00
    • A61B5/0424A61B5/0476Y10S128/908
    • A pair of toroidally wound cores are maintained in a generally parallel, vertical, spaced apart relationship by a tubular insulating member passing through the toroid centers. The tubular member insulates the windings from a coupling loop which passes through the tube and which closes outside the toroidal windings. One winding is the primary of the isolation circuit, connecting the source of signals through a FET device to ground, and the other winding is secondary winding, which is also connected to ground through a FET, and which is coupled to a utilization device through a low pass filter. The FET devices are synchronously pulsed at a frequency above the signal frequency and the filter pass band.
    • 一对环形卷绕的芯通过通过环形中心的管状绝缘构件保持大致平行的垂直隔开的关系。 管状构件将绕组与通过管并联在环形绕组外部的耦合回路隔离。 一个绕组是隔离电路的主要部分,将信号源通过FET器件连接到地,而另一个绕组是次级绕组,其也通过FET连接到地,并且其通过 低通滤波器。 FET器件以高于信号频率和滤波器通带的频率同步脉冲。
    • 70. 发明授权
    • Method for the analysis, display and classification of multivariate
indices of brain function--a functional electrophysiological brain scan
    • 脑功能多变量指数分析,显示和分类方法 - 功能性电生理脑扫描
    • US4188956A
    • 1980-02-19
    • US918730
    • 1978-06-26
    • E. Roy John
    • E. Roy John
    • A61B5/0424A61B5/0478A61B5/0484A61B5/04
    • A61B5/7264A61B5/0424A61B5/0478A61B5/0484A61B5/7232
    • A method in electroencephalography (EEG) for the display of neurometric test data in which electrical activity generated by the brain either spontaneously or in response to specified challenges or conditions is detected at specified locations on the head surface of the subject by a plurality of electrodes. Features extracted from the spontaneous or evoked brain waves are quantified according to specified neurometric indices and categorized, using the mean values and standard deviations of control groups, according to their relative probability in a population of normal healthy people. Multivariate methods such as multiple analysis of variance or stepwise discriminate analysis can be used to identify independent features particularly useful for diagnosis. The values of such features can be used to construct a multivariate vector for each individual patient. If the length of this vector for data from a specified electrode placement is above the norm by a predetermined amount, for example, two standard errors, a plus sign is plotted at the corresponding position in a head diagram. If it is below the norm, for example, by more than two standard deviations (p
    • 用于显示神经测试数据的脑电图方法(EEG),其中通过多个电极在受试者的头部表面上的指定位置处检测由大脑自发产生或响应于特定挑战或条件的电活动。 从自发或诱发的脑波中提取的特征根据指定的神经测量指标进行量化,并根据其在正常健康人群中的相对概率使用对照组的平均值和标准偏差进行分类。 可以使用多变量方法(如多重方差分析或逐步鉴别分析)来识别对诊断特别有用的独立特征。 这些特征的值可用于为每个单独的患者构建多变量载体。 如果用于来自指定电极放置的数据的该向量的长度高于标准预定量,例如两个标准误差,则在头部图中的相应位置处绘制加号。 如果低于规范,例如,超过两个标准偏差(p <0.01),头部图上绘制一个减号。