会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明申请
    • Head Pose Assessment Methods And Systems
    • 头姿评估方法与系统
    • US20120139832A1
    • 2012-06-07
    • US13398171
    • 2012-02-16
    • Yuxiao HULei ZhangMingjing LiHong-Jiang Zhang
    • Yuxiao HULei ZhangMingjing LiHong-Jiang Zhang
    • G06F3/01
    • G06F3/012G06K9/00268G06K9/6211G06T7/73G06T2207/30201
    • Improvements are provided to effectively assess a user's face and head pose such that a computer or like device can track the user's attention towards a display device(s). Then the region of the display or graphical user interface that the user is turned towards can be automatically selected without requiring the user to provide further inputs. A frontal face detector is applied to detect the user's frontal face and then key facial points such as left/right eye center, left/right mouth corner, nose tip, etc., are detected by component detectors. The system then tracks the user's head by an image tracker and determines yaw, tilt and roll angle and other pose information of the user's head through a coarse to fine process according to key facial points and/or confidence outputs by pose estimator.
    • 提供了改进以有效地评估用户的脸部和头部姿势,使得计算机或类似装置可以跟踪用户对显示装置的注意。 然后可以自动选择用户转向的显示或图形用户界面的区域,而不需要用户提供进一步的输入。 应用前置面部检测器来检测使用者的正面,然后通过部件检测器检测左右眼中心,左/右口角,鼻尖等的关键面部点。 然后,系统通过图像跟踪器跟踪用户的头部,并且通过姿态估计器根据关键面部点和/或置信输出,通过粗略到精细处理确定用户头部的偏航,倾斜和滚动角度和其他姿态信息。
    • 63. 发明申请
    • Visual Language Modeling for Image Classification
    • 图像分类的视觉语言建模
    • US20090060351A1
    • 2009-03-05
    • US11847959
    • 2007-08-30
    • Mingjing LiWei-Ying MaZhiwei LiLei Wu
    • Mingjing LiWei-Ying MaZhiwei LiLei Wu
    • G06K9/62
    • G06K9/4685G06K9/4642G06K9/6278
    • Systems and methods for visual language modeling for image classification are described. In one aspect the systems and methods model training images corresponding to multiple image categories as matrices of visual words. Visual language models are generated from the matrices. In view of a given image, for example, provided by a user or from the Web, the systems and methods determine an image category corresponding to the given image. This image categorization is accomplished by maximizing the posterior probability of visual words associated with the given image over the visual language models. The image category, or a result corresponding to the image category, is presented to the user.
    • 描述了用于图像分类的视觉语言建模的系统和方法。 在一个方面,系统和方法将对应于多个图像类别的训练图像建模为视觉词的矩阵。 视觉语言模型是从矩阵生成的。 考虑到例如由用户或从Web提供的给定图像,系统和方法确定对应于给定图像的图像类别。 这种图像分类是通过在视觉语言模型上最大化与给定图像相关联的视觉词的后验概率来实现的。 图像类别或与图像类别对应的结果被呈现给用户。
    • 64. 发明申请
    • CLASSIFICATION OF IMAGES AS ADVERTISEMENT IMAGES OR NON-ADVERTISEMENT IMAGES
    • 图像分类作为广告图像或非广告图像
    • US20080313031A1
    • 2008-12-18
    • US11762553
    • 2007-06-13
    • Mingjing LiZhiwei LiDongfang LiBin Wang
    • Mingjing LiZhiwei LiDongfang LiBin Wang
    • G06Q30/00
    • G06Q30/02G06Q30/0277
    • An advertisement image classification system trains a binary classifier to classify images as advertisement images or non-advertisement images and then uses the binary classifier to classify images of web pages as advertisement images or non-advertisement images. During a training phase, the classification system generates training data of feature vectors representing the images and labels indicating whether an image is an advertisement image or a non-advertisement image. The classification system trains a binary classifier to classify images using training data. During a classification phase, the classification system inputs a web page with an image and generates a feature vector for the image. The classification system then applies the trained binary classifier to the feature vector to generate a score indicating whether the image is an advertisement image or a non-advertisement image.
    • 广告图像分类系统训练二进制分类器将图像分类为广告图像或非广告图像,然后使用二进制分类器将网页的图像分类为广告图像或非广告图像。 在训练阶段,分类系统生成表示图像的特征向量的训练数据,以及指示图像是广告图像还是非广告图像的标签。 分类系统训练二进制分类器,以使用训练数据对图像进行分类。 在分类阶段,分类系统输入具有图像的网页,并生成图像的特征向量。 然后,分类系统将经过训练的二进制分类器应用于特征向量,以生成指示图像是广告图像还是非广告图像的分数。
    • 65. 发明申请
    • Efficient Propagation for Face Annotation
    • 面部注释的有效传播
    • US20080152201A1
    • 2008-06-26
    • US12047247
    • 2008-03-12
    • Lei ZhangMingjing LiWei-Ying MaYan-Feng SunYuxiao Hu
    • Lei ZhangMingjing LiWei-Ying MaYan-Feng SunYuxiao Hu
    • G06K9/46G06K9/00
    • G06K9/00288G06F16/54G06F16/58G06K9/6221G06K2009/00328Y10S707/99945Y10S707/99948
    • Systems, engines, user interfaces, and methods allow a user to select a group of images, such as digital photographs, and assign to the group of images the name of a person who is represented in each of the images. The name is automatically propagated to the face of the person, each time the person's face occurs in an image. In one implementation, names and associations are shared between a browsing mode for viewing multiple images at once and a viewer mode, for viewing one image at a time. The browsing mode can provide a menu of candidate names for annotating a face in a single image of the viewer mode. Likewise, the viewer mode can provide annotated face information to the browser mode for facilitating name propagation. Identification of a person's face in multiple images can be accomplished not only by finding similarities in facial features but also by finding similarities in contextual features near the face in different images.
    • 系统,引擎,用户界面和方法允许用户选择一组图像,例如数字照片,并且在图像组中分配在每个图像中表示的人的姓名。 每当人的脸发生在图像中时,名称将自动传播到人的脸部。 在一个实现中,名称和关联在用于一次查看多个图像的浏览模式和观看者模式之间共享,以便一次查看一个图像。 浏览模式可以提供用于在观看者模式的单个图像中注释脸部的候选名称的菜单。 类似地,观看者模式可以向浏览器模式提供注释的面部信息,以便于名称传播。 可以通过在面部特征中发现相似性,而且通过在不同图像中的脸部附近的上下文特征中找到相似性来实现多个图像中的人脸识别。
    • 66. 发明授权
    • Head pose assessment methods and systems
    • 头姿势评估方法和系统
    • US07391888B2
    • 2008-06-24
    • US10452783
    • 2003-05-30
    • Yuxiao HuLei ZhangMingjing LiHong-Jiang Zhang
    • Yuxiao HuLei ZhangMingjing LiHong-Jiang Zhang
    • G06K9/00
    • G06F3/012G06K9/00268G06K9/6211G06T7/73G06T2207/30201
    • Improvements are provided to effectively assess a user's face and head pose such that a computer or like device can track the user's attention towards a display device(s). Then the region of the display or graphical user interface that the user is turned towards can be automatically selected without requiring the user to provide further inputs. A frontal face detector is applied to detect the user's frontal face and then key facial points such as left/right eye center, left/right mouth corner, nose tip, etc., are detected by component detectors. The system then tracks the user's head by an image tracker and determines yaw, tilt and roll angle and other pose information of the user's head through a coarse to fine process according to key facial points and/or confidence outputs by pose estimator.
    • 提供了改进以有效地评估用户的脸部和头部姿势,使得计算机或类似装置可以跟踪用户对显示装置的注意。 然后可以自动选择用户转向的显示或图形用户界面的区域,而不需要用户提供进一步的输入。 应用前置面部检测器来检测使用者的正面,然后通过部件检测器检测左右眼中心,左/右口角,鼻尖等的关键面部点。 然后,系统通过图像跟踪器跟踪用户的头部,并且通过姿态估计器根据关键面部点和/或置信输出,通过粗略到精细处理确定用户头部的偏航,倾斜和滚动角度和其他姿态信息。