会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明授权
    • Image projecting device and method
    • 图像投影装置及方法
    • US07128420B2
    • 2006-10-31
    • US10482928
    • 2002-07-08
    • Yuval KapellnerSharon KapellnerItzhak PomerantzZeev ZalevskyEran Sabo
    • Yuval KapellnerSharon KapellnerItzhak PomerantzZeev ZalevskyEran Sabo
    • G03B21/14G03B21/20
    • H04N9/3129H04N5/7416H04N9/315
    • An image projecting device is presented. The device comprises an SLM pixel arrangement; and two lens arrays. The lens arrays are respectively located at opposite surfaces of the SLM pixel arrangement and are integral with the SLM pixel arrangement, forming together with the SLM pixel arrangement a common SLM unit. Each lens in one array and a respective opposite lens in the other array are associated with a corresponding one of the pixels. Each of the lens arrays is implemented in a polymer spacer and is either spaced from the corresponding surface of the opposite surfaces of the pixel arrangement a distance substantially not exceeding 50 μm or is in physical contact with the respective surface. The device also comprises a light source system operable to produce an incident light beam of a predetermined cross section corresponding to the size of an active surface of the SLM pixel arrangement; and a magnification optics.
    • 提出了一种图像投影装置。 该装置包括SLM像素布置; 和两个透镜阵列。 透镜阵列分别位于SLM像素布置的相对表面处,并且与SLM像素布置成一体,与SLM像素布置与公共SLM单元一起形成。 一个阵列中的每个透镜和另一个阵列中的相应的相对透镜与相应的一个像素相关联。 每个透镜阵列以聚合物间隔物实现,并且与像素布置的相对表面的对应表面间隔开,基本上不超过50μm的距离或者与相应表面物理接触。 该装置还包括光源系统,其可操作以产生对应于SLM像素布置的有源表面的尺寸的预定横截面的入射光束; 和放大光学元件。
    • 62. 发明授权
    • Optical method and system for extended depth of focus
    • 用于延长焦深的光学方法和系统
    • US07061693B2
    • 2006-06-13
    • US10974943
    • 2004-10-28
    • Zeev Zalevsky
    • Zeev Zalevsky
    • G02B9/00G02B27/46
    • G02B27/00A61F2/16G02B27/0075G02B27/58G02B2207/129
    • An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.
    • 提供了一种用于延长焦深的成像装置和方法。 成像装置包括具有特定情感光圈的成像透镜和与所述成像透镜相关联的光学元件。 光学元件被配置为限定空间上低频相位的相位影响的非衍射光学元件。 光学元件和成像透镜限定由不同光学特性的间隔开的基本上光学透明的特征形成的预定图案。 光学元件的至少一个相变区域在成像透镜平面内的位置由至少所述情感光圈的尺寸确定。
    • 67. 发明申请
    • Multi-Taper Optical Coupler
    • 多锥光耦合器
    • US20150286002A1
    • 2015-10-08
    • US13500308
    • 2012-04-04
    • Ted FrumkinZeev Zalevsky
    • Ted FrumkinZeev Zalevsky
    • G02B6/26
    • G02B6/262G02B6/1228G02B6/305
    • An optical coupler includes a plurality of tapers, each of the taper-bases arranged substantially in a first plane to form a base of the optical coupler for connecting to a first optical waveguide, and the taper-tips arranged substantially non-overlapping in a second plane corresponding to a coupling facet for coupling with a second optical waveguide. This multi-taper coupler overcomes the energy loss of conventional techniques, allowing optical coupling between a variety of optical devices including optical fibers, waveguides, diodes, and switches. The multi-taper has increased information transmission efficiency, reduced loss of signal strength between coupled products, and is more robust to damage of the coupler, and the coupling area is larger than conventional couplers thereby reducing coupling complexity and increasing coupling probability.
    • 光耦合器包括多个锥形,每个锥形基座基本上布置在第一平面中以形成用于连接到第一光波导的光耦合器的基座,并且锥形尖端在第二平面中布置成基本上不重叠 平面对应于用于与第二光波导耦合的耦合面。 该多锥形耦合器克服了常规技术的能量损失,允许在包括光纤,波导,二极管和开关的各种光学装置之间的光耦合。 多锥度增加了信息传输效率,降低了耦合产品之间的信号强度损失,并且对耦合器的损坏更加鲁棒,并且耦合面积大于常规耦合器,从而降低耦合复杂度并增加耦合概率。