会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 63. 发明授权
    • Method for modeling data structures by creating digraphs through contexual distances
    • 通过连续距离创建二维图来建立数据结构的方法
    • US07970727B2
    • 2011-06-28
    • US12032705
    • 2008-02-18
    • Deli ZhaoZhouchen LinXiaoou Tang
    • Deli ZhaoZhouchen LinXiaoou Tang
    • G06F17/10
    • G06K9/6248
    • A method for modeling data affinities and data structures. In one implementation, a contextual distance may be calculated between a selected data point in a data sample and a data point in a contextual set of the selected data point. The contextual set may include the selected data point and one or more data points in the neighborhood of the selected data point. The contextual distance may be the difference between the selected data point's contribution to the integrity of the geometric structure of the contextual set and the data point's contribution to the integrity of the geometric structure of the contextual set. The process may be repeated for each data point in the contextual set of the selected data point. The process may be repeated for each selected data point in the data sample. A digraph may be created using a plurality of contextual distances generated by the process.
    • 一种用于建模数据亲和度和数据结构的方法。 在一个实现中,可以在数据样本中的所选数据点和所选数据点的上下文集合中的数据点之间计算上下文距离。 所述上下文集合可以包括所选数据点和所选数据点附近的一个或多个数据点。 上下文距离可以是所选数据点对上下文集合的几何结构的完整性的贡献与数据点对上下文集合的几何结构的完整性的贡献之间的差异。 可以对所选数据点的上下文集合中的每个数据点重复该过程。 可以对数据样本中的每个选定的数据点重复该过程。 可以使用由该过程生成的多个上下文距离来创建有向图。
    • 64. 发明授权
    • Object detection and recognition with bayesian boosting
    • 贝叶斯提升对象检测和识别
    • US07949621B2
    • 2011-05-24
    • US11871899
    • 2007-10-12
    • Rong XiaoXiaoou Tang
    • Rong XiaoXiaoou Tang
    • G06F15/18
    • G06N7/005G06K9/6256
    • An efficient, effective and at times superior object detection and/or recognition (ODR) function may be built from a set of Bayesian stumps. Bayesian stumps may be constructed for each feature and object class, and the ODR function may be constructed from the subset of Bayesian stumps that minimize Bayesian error for a particular object class. That is, Bayesian error may be utilized as a feature selection measure for the ODR function. Furthermore, Bayesian stumps may be efficiently implemented as lookup tables with entries corresponding to unequal intervals of feature histograms. Interval widths and entry values may be determined so as to minimize Bayesian error, yielding Bayesian stumps that are optimal in this respect.
    • 可以从一组贝叶斯树桩构建一个有效,有效且有时优越的物体检测和/或识别(ODR)功能。 可以为每个特征和对象类构造贝叶斯树桩,并且可以从贝叶斯树桩的子集构建ODR功能,以使特定对象类的贝叶斯误差最小化。 也就是说,贝叶斯误差可以用作ODR功能的特征选择测量。 此外,贝叶斯树桩可以被有效地实现为具有对应于特征直方图的不等间隔的条目的查找表。 间隔宽度和入口值可以被确定为使贝叶斯误差最小化,从而产生在这方面是最佳的贝叶斯树桩。
    • 65. 发明授权
    • Background removal in a live video
    • 在实时视频中进行后台删除
    • US07720283B2
    • 2010-05-18
    • US11469371
    • 2006-08-31
    • Jian SunHeung-Yeung ShumXiaoou TangWeiwei Zhang
    • Jian SunHeung-Yeung ShumXiaoou TangWeiwei Zhang
    • G06K9/34
    • G06K9/38G06T7/11G06T7/90G06T2207/10016
    • Exemplary systems and methods segment a foreground from a background image in a video sequence. In one implementation, a system refines a segmentation boundary between the foreground and the background image by attenuating background contrast while preserving contrast of the segmentation boundary itself, providing an accurate background cut of live video in real time. A substitute background may then be merged with the segmented foreground within the live video. The system can apply an adaptive background color mixture model to improve segmentation of foreground from background under various background changes, such as camera movement, illumination change, and movement of small objects in the background.
    • 示例性系统和方法从视频序列中的背景图像分割前景。 在一个实现中,系统通过衰减背景对比度同时保留分割边界本身的对比度来优化前景和背景图像之间的分割边界,从而实时提供实况视频的精确背景切割。 然后可以将替代背景与实时视频中的分段前景合并。 该系统可以应用自适应背景颜色混合模型,从而在各种背景变化(例如相机移动,照明变化和背景中的小物体的移动)下改进背景的前景分割。
    • 67. 发明申请
    • Adaptive Visual Similarity for Text-Based Image Search Results Re-ranking
    • 基于文本的图像搜索结果的自适应视觉相似性重新排序
    • US20090313239A1
    • 2009-12-17
    • US12140244
    • 2008-06-16
    • Fang WenXiaoou Tang
    • Fang WenXiaoou Tang
    • G06F17/30
    • G06K9/46G06F16/5838G06K9/00664
    • Described is a technology in which images initially ranked by some relevance estimate (e.g., according to text-based similarities) are re-ranked according to visual similarity with a user-selected image. A user-selected image is received and classified into an intention class, such as a scenery class, portrait class, and so forth. The intention class is used to determine how visual features of other images compare with visual features of the user-selected image. For example, the comparing operation may use different feature weighting depending on which intention class was determined for the user-selected image. The other images are re-ranked based upon their computed similarity to the user-selected image, and returned as query results. Retuning of the feature weights using actual user-provided relevance feedback is also described.
    • 描述了一种技术,其中根据与用户选择的图像的视觉相似性来重新排列根据某些相关性估计(例如,根据基于文本的相似性)排序的图像。 接收用户选择的图像并将其分类为意图类别,例如风景类别,肖像类别等。 意图类用于确定其他图像的视觉特征如何与用户选择的图像的视觉特征进行比较。 例如,比较操作可以根据为用户选择的图像确定哪种意图类别而使用不同的特征加权。 其他图像根据其计算出的与用户选择的图像的相似度重新排列,并作为查询结果返回。 还描述了使用实际的用户提供的相关性反馈来重新调整特征权重。
    • 68. 发明申请
    • METHOD FOR MODELING DATA STRUCTURES USING LOCAL CONTEXTS
    • 使用本地参数建模数据结构的方法
    • US20090132213A1
    • 2009-05-21
    • US12032705
    • 2008-02-18
    • Deli ZhaoZhouchen LinXiaoou Tang
    • Deli ZhaoZhouchen LinXiaoou Tang
    • G06F17/10
    • G06K9/6248
    • A method for modeling data affinities and data structures. In one implementation, a contextual distance may be calculated between a selected data point in a data sample and a data point in a contextual set of the selected data point. The contextual set may include the selected data point and one or more data points in the neighborhood of the selected data point. The contextual distance may be the difference between the selected data point's contribution to the integrity of the geometric structure of the contextual set and the data point's contribution to the integrity of the geometric structure of the contextual set. The process may be repeated for each data point in the contextual set of the selected data point. The process may be repeated for each selected data point in the data sample. A digraph may be created using a plurality of contextual distances generated by the process.
    • 一种用于建模数据亲和度和数据结构的方法。 在一个实现中,可以在数据样本中的所选数据点和所选数据点的上下文集合中的数据点之间计算上下文距离。 所述上下文集合可以包括所选数据点和所选数据点附近的一个或多个数据点。 上下文距离可以是所选数据点对上下文集合的几何结构的完整性的贡献与数据点对上下文集合的几何结构的完整性的贡献之间的差异。 可以对所选数据点的上下文集合中的每个数据点重复该过程。 可以对数据样本中的每个选定的数据点重复该过程。 可以使用由该过程生成的多个上下文距离来创建有向图。
    • 69. 发明申请
    • Face Annotation Framework With Partial Clustering And Interactive Labeling
    • 面部注释框架与部分聚类和交互式标签
    • US20080304755A1
    • 2008-12-11
    • US11760641
    • 2007-06-08
    • Rong XiaoFang WenXiaoou Tang
    • Rong XiaoFang WenXiaoou Tang
    • G06K9/62G06K9/00
    • G06K9/6226G06F17/30017G06F17/30265G06F17/3028G06K9/00288G06K9/6254
    • Systems and methods are described for a face annotation framework with partial clustering and interactive labeling. In one implementation, an exemplary system automatically groups some images of a collection of images into clusters, each cluster mainly including images that contain a person's face associated with that cluster. After an initial user-labeling of each cluster with the person's name or other label, in which the user may also delete/label images that do not belong in the cluster, the system iteratively proposes subsequent clusters for the user to label, proposing clusters of images that when labeled, produce a maximum information gain at each iteration and minimize the total number of user interactions for labeling the entire collection of images.
    • 描述了具有部分聚类和交互式标签的面部注释框架的系统和方法。 在一个实现中,示例性系统自动地将图像集合的一些图像分组成群集,每个群集主要包括包含与该群集相关联的人脸的图像。 在用户的姓名或其他标签对每个集群进行初始用户标签之后,用户还可以在其中删除/标记不属于集群的图像,系统迭代地提出用于用户标签的后续集群,提出集群 标记后的图像在每次迭代时产生最大的信息增益,并最大限度地减少用户标记整个图像集合的总体交互次数。