会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 62. 发明申请
    • MAGNETO-RESISTIVE EFFECT DEVICE OF THE CPP STRUCTURE, AND MAGNETIC DISK SYSTEM
    • CPP结构和磁盘系统的磁阻效应器件
    • US20090002893A1
    • 2009-01-01
    • US11768435
    • 2007-06-26
    • Yoshihiro TsuchiyaTomohito MizunoShinji Hara
    • Yoshihiro TsuchiyaTomohito MizunoShinji Hara
    • G11B5/33G11B5/147G11B5/48
    • H01L43/08B82Y25/00G01R33/093G11B5/3906G11B5/3967H01L43/10
    • The invention provides a giant magneto-resistive effect device (CPP-GMR device) having a CPP (current perpendicular to plane) structure comprising a spacer layer, and a fixed magnetized layer and a free layer stacked one upon another with said spacer layer interposed between them, with a sense current applied in a stacking direction, wherein the free layer functions such that the direction of magnetization changes depending on an external magnetic field, and the spacer layer comprises a first and a second nonmagnetic metal layer, each formed of a nonmagnetic metal material, and a semiconductor oxide layer interposed between the first and the second nonmagnetic metal layer, wherein the semiconductor oxide layer that forms a part of the spacer layer is made of zinc oxide, tin oxide, indium oxide, and indium tin oxide (ITO), the first nonmagnetic metal layer is made of Cu, and the second nonmagnetic metal layer is substantially made of Zn. MR change rate and heat resistance are thus much more improved than ever before.
    • 本发明提供一种具有CPP(垂直于平面的电流)结构的巨型磁阻效应器件(CPP-GMR器件),其包括间隔层,以及固定磁化层和自由层,所述固定磁化层和自由层彼此层叠, 它们具有沿堆叠方向施加的感测电流,其中自由层起着使得磁化方向取决于外部磁场的作用,并且间隔层包括第一和第二非磁性金属层,每个非磁性金属层由非磁性 金属材料和介于第一和第二非磁性金属层之间的半导体氧化物层,其中形成间隔层的一部分的半导体氧化物层由氧化锌,氧化锡,氧化铟和氧化铟锡(ITO ),第一非磁性金属层由Cu制成,第二非磁性金属层基本上由Zn制成。 因此,MR变化率和耐热性比以前更加改善。
    • 63. 发明申请
    • METHOD OF PRODUCING THE MAGNETORESISTIVE DEVICE OF THE CPP TYPE
    • 生产CPP型磁性装置的方法
    • US20090274837A1
    • 2009-11-05
    • US12112598
    • 2008-04-30
    • Shinji HaraYoshihiro TsuchiyaTomohito Mizuno
    • Shinji HaraYoshihiro TsuchiyaTomohito Mizuno
    • B05D5/12
    • G11B5/3163G01R33/098G11B5/3903H01L43/12
    • The invention provides a process for the formation of a sensor site of a magnetoresistive device in which the first ferromagnetic layer and a nonmagnetic intermediate layer are formed in order, then surface treatment is applied to the surface of the nonmagnetic intermediate layer, and thereafter the second ferromagnetic layer is formed on the thus treated surface of the nonmagnetic intermediate layer. The surface treatment is implemented by a method of letting a modification element hit right on the surface of the nonmagnetic intermediate layer using a vacuum. The nonmagnetic intermediate layer is composed mainly of an oxide or nitride, and the modification element is a low-melting element having a melting point of 500° C. or lower. It is thus possible to reduce spin scattering while reducing oxidization or nitriding of the surfaces of the ferromagnetic layers used for the sensor site, thereby achieving high MR change rates. There is also a limited dispersion of the MR change rate with extremely improved reliability.
    • 本发明提供一种用于形成磁阻器件的传感器位置的方法,其中依次形成第一铁磁层和非磁性中间层,然后对非磁性中间层的表面进行表面处理,之后将第二铁磁体层 在非磁性中间层的如此处理的表面上形成铁磁层。 表面处理通过使用真空使修饰元件在非磁性中间层的表面上正确敲击的方法来实现。 非磁性中间层主要由氧化物或氮化物构成,改性元素为熔点为500℃以下的低熔点元素。 因此,可以减少旋转散射,同时减少用于传感器部位的铁磁层的表面的氧化或氮化,由此实现高MR变化率。 MR变化率的有限分散也具有极高的可靠性。
    • 65. 发明申请
    • Magnetoresistive element including heusler alloy layer
    • 磁阻元件包括heusler合金层
    • US20070230070A1
    • 2007-10-04
    • US11709148
    • 2007-02-22
    • Tomohito MizunoYoshihiro Tsuchiya
    • Tomohito MizunoYoshihiro Tsuchiya
    • G11B5/127
    • G01R33/093B82Y10/00B82Y25/00G11B5/3929G11B2005/3996
    • A pinned layer of an MR element includes an underlying magnetic layer made of a magnetic alloy layer having a body-centered cubic structure, and a Heusler alloy layer formed on the underlying magnetic layer. A free layer of the MR element includes an underlying magnetic layer made of a magnetic alloy layer having a body-centered cubic structure, and a Heusler alloy layer formed on the underlying magnetic layer. Each of these two Heusler alloy layers is made of a CoMnSi alloy having an Mn content higher than 25 atomic percent and lower than or equal to 40 atomic percent, and contains a principal component having a B2 structure in which Co atoms are placed at body-centered positions of unit cells and Mn atoms or Si atoms are randomly placed at vertexes of the unit cells.
    • MR元件的被钉扎层包括由具有体心立方结构的磁性合金层制成的下层磁性层,以及形成在下面的磁性层上的Heusler合金层。 MR元件的自由层包括由具有体心立方结构的磁性合金层制成的下层磁性层和形成在下面的磁性层上的Heusler合金层。 这两个Heusler合金层中的每一个由Mn含量高于25原子%且低于或等于40原子%的CoMnSi合金制成,并且包含具有其中Co原子被置于体态的B2结构的主要成分, 单元电池的中心位置和Mn原子或Si原子随机放置在单位晶胞的顶点。
    • 67. 发明申请
    • MAGNETO-RESISTIVE EFFECT DEVICE, THIN-FILM MAGNETIC HEAD, HEAD GIMBAL ASSEMBLY, AND HARD DISK SYSTEM
    • 磁阻效应器件,薄膜磁头,头盖组件和硬盘系统
    • US20080112096A1
    • 2008-05-15
    • US11934979
    • 2007-11-05
    • Tomohito MizunoYoshihiro TsuchiyaKei Hirata
    • Tomohito MizunoYoshihiro TsuchiyaKei Hirata
    • G11B5/33
    • G11B5/39B82Y25/00G01R33/093G11B5/3906G11B5/3993H01F10/3254H01L43/10
    • The thickness of the semiconductor layer forming a part of the spacer layer is set in the thickness range for a transitional area showing conduction performance halfway between ohmic conduction and semi-conductive conduction in relation to the junction of the semiconductor layer with the first nonmagnetic metal layer and the second nonmagnetic metal layer. This permits the specific resistance of the spacer layer to be greater than that of an ohomic conduction area, so that spin scattering and diffusion depending on a magnetized state increases, resulting in an increase in the MR ratio. The CPP-GMR device can also have a suitable area resistivity (AR) value.If the device can have a suitable area resistivity and a high MR ratio, it is then possible to obtain more stable output power in low current operation than ever before, and extend the service life of the device as well. The device is also lower in resistance than a TMR device, so that significant noise reductions are achievable.
    • 形成间隔层的一部分的半导体层的厚度设定在相对于半导体层与第一非磁性金属层的接合部的表现为欧姆导通和半导电传导之间的导通性能的过渡区域的厚度范围 和第二非磁性金属层。 这允许间隔层的比电阻大于欧姆导电面积的电阻,使得依赖于磁化状态的自旋散射和扩散增加,导致MR比的增加。 CPP-GMR装置也可以具有合适的面积电阻率(AR)值。 如果器件可以具有合适的面积电阻率和高的MR比,那么在低电流操作中可以获得比以往更稳定的输出功率,并且延长器件的使用寿命。 该器件的电阻也比TMR器件低,从而可以实现显着的降噪。