会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 62. 发明授权
    • Optical modulator utilizing multi-level signaling
    • 采用多级信令的光调制器
    • US07483597B2
    • 2009-01-27
    • US11975050
    • 2007-10-17
    • Kalpendu ShastriBipin Dama
    • Kalpendu ShastriBipin Dama
    • G02F1/00G02F1/01G02F1/03G02F1/035G02B26/00
    • G02F1/2255G02F1/0123H04B10/541
    • An optical modulator is formed to include a plurality of separate electrodes disposed along one arm, the electrodes having different lengths and driven with different signals to provide for multi-level signaling (e.g., PAM-4 signaling). By using separate drivers to energize the different sections, the number of sections energized at a given point in time will define the net phase shift introduced to the optical signal. The total length of the combined modulator sections is associated with a π phase shift (180°). Each section is driven by either a digital “one” or “zero”, so as to create the multi-level modulation. An essentially equal change in power between adjacent transmitted symbols is accomplished by properly adjusting the lengths of each individual section.
    • 光学调制器被形成为包括沿着一个臂布置的多个单独的电极,电极具有不同的长度并用不同的信号驱动以提供多级信号(例如,PAM-4信令)。 通过使用单独的驱动器来激励不同的部分,在给定时间点通电的部分的数量将定义引入光信号的净相移。 组合调制器部分的总长度与pi相移(180°)相关联。 每个部分由数字“一”或“零”驱动,以创建多级调制。 通过适当调整每个单独部分的长度来实现相邻传输符号之间的功率基本上相等的变化。
    • 65. 发明授权
    • Planar waveguide optical isolator in thin silicon-on-isolator (SOI) structure
    • 薄硅隔离器(SOI)结构中的平面波导光隔离器
    • US07113676B2
    • 2006-09-26
    • US11005286
    • 2004-12-06
    • David PiedeMargaret GhironPrakash GothoskarRobert Keith MontgomeryVipulkumar PatelKalpendu ShastriSoham PathakKatherine A. YanushefskiHarvey Wagner
    • David PiedeMargaret GhironPrakash GothoskarRobert Keith MontgomeryVipulkumar PatelKalpendu ShastriSoham PathakKatherine A. YanushefskiHarvey Wagner
    • G02B6/26G02B6/42
    • G02B6/1228G02B6/125G02B6/4207
    • A planar optical isolator is formed within the silicon surface layer of an SOI structure. A forward-directed signal is applied to an input waveguiding section of the isolator and thereafter propagates through a non-reciprocal waveguide coupling region into an output waveguide section. A rearward-directed signal enters via the output waveguide section and is thereafter coupled into the non-reciprocal waveguide structure, where the geometry of the structure functions to couple only a small amount of the reflected signal into the input waveguide section. In one embodiment, the non-reciprocal structure comprises an N-way directional coupler (with one output waveguide, one input waveguide and N−1 isolating waveguides). In another embodiment, the non-reciprocal structure comprises a waveguide expansion region including a tapered, mode-matching portion coupled to the output waveguide and an enlarged, non-mode matching portion coupled to the input waveguide such that a majority of a reflected signal will be mismatched with respect to the input waveguide section. By cascading a number of such planar SOI-based structures, increased isolation can be achieved—advantageously within a monolithic arrangement.
    • 在SOI结构的硅表面层内形成平面光隔离器。 正向信号被施加到隔离器的输入波导部分,然后通过非互易波导耦合区域传播到输出波导部分中。 后向信号经由输出波导部分进入,然后耦合到不可逆波导结构中,其中结构的几何结构仅将少量的反射信号耦合到输入波导部分中。 在一个实施例中,非互易结构包括N路定向耦合器(具有一个输出波导,一个输入波导和N-1个隔离波导)。 在另一个实施例中,不可逆结构包括波导扩展区域,其包括耦合到输出波导的锥形模式匹配部分和耦合到输入波导的放大的非模式匹配部分,使得反射信号的大部分将 相对于输入波导部分不匹配。 通过级联多个这种平面的基于SOI的结构,可以实现增加的隔离 - 有利地在单片布置中。
    • 67. 发明申请
    • SOI-based optical interconnect arrangement
    • 基于SOI的光学互连装置
    • US20060126993A1
    • 2006-06-15
    • US11287114
    • 2005-11-25
    • David PiedeBipin DamaKalpendu ShastriJohn FangmanHarvey WagnerMargaret Ghiron
    • David PiedeBipin DamaKalpendu ShastriJohn FangmanHarvey WagnerMargaret Ghiron
    • G02B6/12
    • H04B10/801G02B6/43
    • An SOI-based optical interconnection arrangement is provided that significantly reduces the size, complexity and power consumption requires of conventional high density electrical interconnections. In particular, a group of optical modulators and wavelength division multiplexers/demultiplexers are used in association with traditional electrical signal paths to “concentrate” a large number of the electrical-pinouts onto one optical waveguide (e.g., fiber). By utilizing a number of such SOI-based signal concentration structures, an optical backplane can be formed that couples all of these concentration structures through one optical substrate and then onto a separate number of output/receiving boards. Additionally, optical gain material may be embedded within the backplane element to further enhance the optical signal quality. The ability to integrate the electrical and optical components within a monolithic SOI-based structure provides for the significant reduction in the overall size of the connection arrangement and, further, reduces the power consumption by about an order of magnitude.
    • 提供了一种基于SOI的光互连装置,其显着地减小了常规高密度电互连所需的尺寸,复杂性和功耗。 特别地,一组光调制器和波分复用器/解复用器与传统的电信号路径相关联地使用,以将大量的电插座“集中”到一个光波导(例如,光纤)上。 通过利用多个这样的基于SOI的信号浓度结构,可以形成光背板,其通过一个光学基板将所有这些浓度结构耦合到另一数目的输出/接收板上。 此外,光增益材料可以嵌入在背板元件内以进一步增强光信号质量。 将电和光学部件集成在基于单片SOI的结构内的能力提供了连接装置的整体尺寸的显着降低,并且进一步将功耗降低约一个数量级。
    • 68. 发明授权
    • Interfacing multiple wavelength sources to thin optical waveguides utilizing evanescent coupling
    • 使用ev逝耦合将多个波长源连接到薄光波导上
    • US07058261B2
    • 2006-06-06
    • US10935146
    • 2004-09-07
    • Margaret GhironPrakash GothoskarRobert Keith MontgomeryVipulkumar PatelSoham PathakKalpendu ShastriKatherine A. Yanushefski
    • Margaret GhironPrakash GothoskarRobert Keith MontgomeryVipulkumar PatelSoham PathakKalpendu ShastriKatherine A. Yanushefski
    • G02B6/34
    • G02B6/12007G02B6/124G02B6/34
    • An arrangement for achieving and maintaining high efficiency coupling of light between a multi-wavelength optical signal and a relatively thin (e.g., sub-micron) silicon optical waveguide uses a prism coupler in association with an evanescent coupling layer. A grating structure having a period less than the wavelengths of transmission is formed in the coupling region (either formed in the silicon waveguide, evanescent coupling layer, prism coupler, or any combination thereof) so as to increase the effective refractive index “seen” by the multi-wavelength optical signal in the area where the beam exiting/entering the prism coupler intercepts the waveguide surface (referred to as the “prism coupling surface”). The period and/or duty cycle of the grating can be controlled to modify the effective refractive index profile in the direction away from the coupling region so as to reduce the effective refractive index from the relatively high value useful in multi-wavelength coupling to the lower value associated with maintaining confinement of the optical signals within the surface waveguide structure, thus reducing reflections along the transition region.
    • 用于实现和维持多波长光信号和较薄(例如亚微米)硅光波导之间的高效率耦合的布置使用与渐逝耦合层相关联的棱镜耦合器。 在耦合区域(形成在硅波导,ev逝耦合层,棱镜耦合器或其任何组合中)形成具有小于透射波长的周期的光栅结构,以便通过“看到”来提高有效折射率 离开/进入棱镜耦合器的光束截取波导表面(称为“棱镜耦合表面”)的区域中的多波长光信号。 可以控制光栅的周期和/或占空比以在远离耦合区域的方向上改变有效折射率分布,以便将有效折射率从在多波长耦合中的有用折射率降低到较低的值 与保持表面波导结构内的光信号的限制相关联的值,从而减少沿着过渡区域的反射。