会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 62. 发明申请
    • METHOD AND SYSTEM FOR EXTRACTING PURE HELIUM
    • US20210069633A1
    • 2021-03-11
    • US16962418
    • 2019-01-10
    • Linde GmbH
    • Tobias KELLERMartin BAUERPatrick SCHIFFMANN
    • B01D53/047B01D53/22
    • The invention relates to a method (200-400) for extracting pure helium using a first membrane separation stage (1), a second membrane separation stage (2), and a third membrane separation stage (3), in which a first helium-containing feed mixture is supplied to the first membrane separation stage (1), a second helium-containing feed mixture is supplied to the second membrane separation stage (2), and a third helium-containing feed mixture is supplied to the third membrane separation stage (3), and in which a first permeate and a first retentate are formed in the first membrane separation stage (1), a second permeate and a second retentate are formed in the second membrane separation stage (2), and a third permeate and a third retentate are formed in the third membrane separation stage (3). According to the invention, the first feed mixture is formed using at least one portion of a helium-containing starting mixture, the second feed mixture is formed using at least one portion of the first permeate, the third feed mixture is formed using at least one portion of the second retentate, the second permeate is at least partially processed by pressure-swing adsorption in order to obtain the pure helium and a remaining mixture, and at least one portion of the third permeate and/or at least one portion of the third retentate is guided back into the method (200). The invention also relates to a corresponding system.
    • 65. 发明申请
    • CRYOGENIC VESSEL
    • US20200332959A1
    • 2020-10-22
    • US16960652
    • 2019-01-17
    • Linde GmbH
    • Florian EHEGARTNER
    • F17C1/14F17C13/00
    • The present invention relates to a cryogenic vessel (300a, 300b) having an inner container (301), an outer container (302), an intermediate space (303) between the inner container (301) and the outer container (302) which can be evacuated, and having at least one fluid distribution container (200), which has an internal volume which extends proceeding from one wall of the inner container (301) into the intermediate space (303), is arranged at least partially within the intermediate space (303) and is fluidically connected to the inner container (301), wherein the internal volume of the fluid distribution container (200) is delimited by a wall which has openings (211, 212, 213) that are designed for the connection of one line (311, 312, 313) each or are each connected with one such line (311, 312, 313). The wall (121, 221) has a convex section (101, 201), wherein a wall thickness of the wall at at least one point is less than 90% of a wall thickness of the inner container (301). The invention also relates to a fluid distribution container (100, 200) and to a method for producing a cryogenic vessel (300a, 300b).
    • 67. 发明申请
    • DEVICE AND METHOD FOR HEATING A FLUID IN A PIPELINE WITH SINGLE-PHASE ALTERNATING CURRENT
    • US20230098601A1
    • 2023-03-30
    • US17798909
    • 2021-02-12
    • BASF SELinde GmbH
    • Andrey SHUSTOVSric JENNEKiara Aenne KOCHENDOERFER
    • H05B3/42
    • An apparatus (100) for heating a fluid is proposed. The apparatus comprises at least one electrically conductive pipeline (112) and/or at least one electrically conductive pipeline segment (114) for receiving the fluid, and at least one single-phase AC power source and/or at least one single-phase AC voltage source (126), each pipeline (112) and/or each pipeline segment (114) being assigned a sin-gle-phase AC power source and/or a single-phase AC voltage source (126) which is connected to the respective pipeline (112) and/or to the respective pipeline segment (114), the respective single-phase AC power source and/or single-phase AC voltage source (126) being designed to generate an electrical current in the respective pipeline (112) and/or in the respective pipeline segment (114), which warms up the respective pipeline (112) and/or the respective pipeline segment (114) by Joulean heat, which is produced when the electrical current passes through conducting pipe material, for heating the fluid, the single-phase AC power source and/or the single-phase AC voltage source (126) being connected to the pipeline (112) and/or the pipeline segment (114) in an electrically conducting manner in such a way that the alternating current generated flows into the pipeline (112) and/or the pipeline segment (114) via a forward conductor (128) and flows back to the AC power source and/or AC voltage source (126) via a return conductor (130).
    • 68. 发明授权
    • Method and system for extracting pure helium
    • US11607641B2
    • 2023-03-21
    • US16962418
    • 2019-01-10
    • Linde GmbH
    • Tobias KellerMartin BauerPatrick Schiffmann
    • B01D53/047B01D53/22
    • The invention relates to a method (200-400) for extracting pure helium using a first membrane separation stage (1), a second membrane separation stage (2), and a third membrane separation stage (3), in which a first helium-containing feed mixture is supplied to the first membrane separation stage (1), a second helium-containing feed mixture is supplied to the second membrane separation stage (2), and a third helium-containing feed mixture is supplied to the third membrane separation stage (3), and in which a first permeate and a first retentate are formed in the first membrane separation stage (1), a second permeate and a second retentate are formed in the second membrane separation stage (2), and a third permeate and a third retentate are formed in the third membrane separation stage (3). According to the invention, the first feed mixture is formed using at least one portion of a helium-containing starting mixture, the second feed mixture is formed using at least one portion of the first permeate, the third feed mixture is formed using at least one portion of the second retentate, the second permeate is at least partially processed by pressure-swing adsorption in order to obtain the pure helium and a remaining mixture, and at least one portion of the third permeate and/or at least one portion of the third retentate is guided back into the method (200). The invention also relates to a corresponding system.