会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 52. 发明授权
    • Phase modulation device, receiver, transmitter and a phase modulating method
    • US10951321B2
    • 2021-03-16
    • US16092158
    • 2017-05-02
    • Xieon Networks S.a.r.l.
    • Ulrich Gaubatz
    • H04B10/548H04B10/50G02F1/01G02B6/27G02B6/28H04B10/60H04B10/40
    • A phase modulation device is provided that comprises a retardation device and a control device. The retardation device is characterized by first and second polarization eigenstates SOPf and SOPs. Light polarized according to the second polarization eigenstate SOPs acquires, upon passing through said retardation device, a delay with regard to light polarized according to the first polarization eigenstate SOPf, which delay corresponds to λ/2±30%, preferably λ/2±20% and most preferably λ/2±10%. The retardation device is arranged to receive input light having a polarization state SOPf; that defines an angle with respect to one of the first and second polarization eigenstates SOPf, SOPs within a predetermined angle range and to emit output light. The control device is configured to control at least one of a change of the angle between the polarization state SOPi; of
      the input light and the respective polarization eigenstate SOPf, SOPs by less than 0.1*π, preferably less than 0.05*π and most preferably less than 0.02*π; and a change of the amount of said delay upon passing through said retardation device by less than 0.3*λ, preferably less than 0.2*λ and most preferably less than 0.1*λ, such that a phase shift of π±30%, preferably π±20% and most preferably π±10% on the output light is obtained.
    • 54. 发明授权
    • Adjustable wide-spectrum wavelength-insensitive directional coupler
    • US10908359B2
    • 2021-02-02
    • US16629920
    • 2018-08-13
    • Henan Shijia Photons Technology Co., Ltd.
    • Liangliang WangJiashun ZhangJunming AnXiaojie YinJianguang LiHongjie WangYuanda WuYue WangXiongwei Hu
    • G02B6/28G02B6/38G02F1/01C01B33/12
    • An adjustable wide-spectrum wavelength-insensitive directional coupler, comprising a substrate (100). A first-stage directional coupling structure (1), a phase-shifting structure (2), and a second-stage directional coupling structure (3) are sequentially connected and disposed on the substrate (100). The phase-shifting structure (2) comprises a phase-shifting curved waveguide, a phase-shifting straight waveguide (22), and a third modulation component (26), wherein the third modulation component (26) is disposed on the phase-shifting curved waveguide. One end of the phase-shifting curved waveguide is connected to an output end of a directional coupled waveguide I (16) of the first-stage directional coupling structure (1), and the other end of the phase-shifting curved waveguide is connected to an input end of a directional coupled waveguide III (30) of the second-stage directional coupling structure (3). One end of the phase-shifting straight waveguide (22) is connected to an output end of a directional coupled waveguide II (17) of the first-stage directional coupling structure (1), and the other end of the phase-shifting straight waveguide (22) is connected to an input end of a directional coupled waveguide IV (31) of the second-stage directional coupling structure (3). The adjustable wide-spectrum wavelength-insensitive directional coupler achieves wide-spectrum wavelength-insensitivity, a wide spectrum of splitting-ratio adjustment and low loss, and is of a compact size for easy integration with other devices.
    • 58. 发明授权
    • Supercontinuum source
    • US10826264B2
    • 2020-11-03
    • US15431730
    • 2017-02-13
    • NKT Photonics A/S
    • John Redvers ClowesAnatoly Borisovich GrudininAdam Devine
    • G02B6/02G02B6/26H01S3/00H01S3/23H01S3/067G02B27/10G02F1/365G02B6/28G02F1/35H01S3/16G02B6/028
    • A supercontinuum optical pulse source provides a combined supercontinuum, and can comprise one or more seed pulse sources; first and second optical amplifiers arranged along first and second respective optical paths, wherein the first and second optical amplifiers are configured to amplify one or more optical signals generated by the one or more seed pulse sources; a first microstructured light-guiding member arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along the first optical path; a second microstructured light-guiding member arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along the second optical path; a supercontinuum-combining member to combine supercontinuum generated in at least the first and second microstructured light-guiding members to form a combined supercontinuum; wherein the supercontinuum-combining member comprises an output fibre, wherein the output fibre comprises a silica-based multimode optical fibre supporting a plurality of spatial modes at one or more wavelengths of the combined supercontinuum; wherein the supercontinuum-combining member has one or more input fibres which support no more than four spatial modes at any wavelength within the combined supercontinuum; and wherein the output fibre of the supercontinuum-combining member supports no more than four spatial modes at any wavelength within the combined supercontinuum.