会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明申请
    • Online document clustering
    • 在线文档聚类
    • US20080205775A1
    • 2008-08-28
    • US12072254
    • 2008-02-25
    • Klaus BrinkerFabian MoerchenBernhard GlomannClaus Neubauer
    • Klaus BrinkerFabian MoerchenBernhard GlomannClaus Neubauer
    • G06K9/62
    • G06F17/30707
    • Documents from a data stream are clustered by first generating a feature vector for each document. A set of cluster centroids (e.g., feature vectors of their corresponding clusters) are retrieved from a memory based on the feature vector of the document and a relative age of each of the cluster centroids. The centroids may be retrieved by retrieving a set of cluster identifiers from a cluster table, the cluster identifiers each indicative of a respective cluster centroid, and retrieving the cluster centroids corresponding to the retrieved cluster identifiers from a memory. A list of cluster identifiers in the cluster table may be maintained based on the relative age of cluster centroids corresponding to the cluster identifiers. Cluster identifiers that correspond to cluster centroids with a relative age exceeding a predetermined threshold are periodically removed from the list of cluster identifiers.
    • 通过首先为每个文档生成特征向量来聚集来自数据流的文档。 基于文档的特征向量和每个聚类中心的相对年龄,从存储器中检索一组聚类中心(例如,其对应的聚类的特征向量)。 可以通过从集群表中检索一组集群标识符来检索质心,每个集群标识符指示相应的集群质心,并且从存储器中检索与所检索的集群标识符相对应的集群质心。 可以基于与集群标识符对应的集群质心的相对年龄来维护集群表中的集群标识符的列表。 对应于具有相对年龄超过预定阈值的聚类中心的群集标识符周期性地从群集标识符列表中移除。
    • 52. 发明申请
    • Bayesian network frameworks for biomedical data mining
    • 用于生物医学数据挖掘的贝叶斯网络框架
    • US20070005257A1
    • 2007-01-04
    • US11110496
    • 2005-07-25
    • Jie ChengClaus Neubauer
    • Jie ChengClaus Neubauer
    • G06F19/00
    • G06K9/6296
    • A system and method for data classification are provided, the system including a processor, an adapter in signal communication with the processor for receiving data, a filtering unit in signal communication with the processor for pre-processing the data and filtering features of the data, a selection unit in signal communication with the processor for learning a Bayesian network (BN) classifier and selecting features responsive to the BN classifier, and an evaluation unit in signal communication with the processor for evaluating a model responsive to the BN classifier; and the method including receiving data, pre-processing the data, filtering features of the data, learning a BN classifier, selecting features responsive to the BN classifier, and evaluating a model responsive to the BN classifier.
    • 提供了一种用于数据分类的系统和方法,该系统包括处理器,与处理器进行信号通信的适配器,用于接收数据;滤波单元,与处理器进行信号通信,用于预处理数据和滤波数据的特征; 与所述处理器进行信号通信的选择单元,用于学习贝叶斯网络(BN)分类器并响应于所述BN分类器选择特征;以及评估单元,用于与所述处理器进行信号通信以评估响应于所述BN分类器的模型; 并且该方法包括接收数据,预处理数据,过滤数据的特征,学习BN分类器,响应于BN分类器选择特征,以及响应于BN分类器来评估模型。
    • 53. 发明授权
    • System and method for case-based multilabel classification and ranking
    • 基于案例的多标签分类和排序的系统和方法
    • US07860818B2
    • 2010-12-28
    • US11764824
    • 2007-06-19
    • Klaus BrinkerClaus Neubauer
    • Klaus BrinkerClaus Neubauer
    • G06N5/00
    • G05B23/0229G06K9/6284G06N99/005
    • The present invention provides methods and apparatus for determining and utilizing case-based ranking methods, such as methods for machine condition monitoring. Specifically, the present invention provides a method for identifying and prioritizing labeled data. The method allows a monitored system to be associated with a calibrated and ordered set of states. Further, in machine condition monitoring, the machine condition is associated with the entire set of states in a particular order with one or more relevance zero-points. That is, a ranked set of calibrated data describing machine conditions is augmented with an annotation indicating a cut-off between relevant and non-relevant data.
    • 本发明提供了用于确定和利用基于案例的排序方法的方法和装置,例如机器状态监视的方法。 具体地,本发明提供了一种用于识别和标记数据的优先级的方法。 该方法允许被监视系统与校准的和有序的状态集相关联。 此外,在机器状态监视中,机器状态与具有一个或多个相关性零点的特定顺序的整个状态集相关联。 也就是说,描述机器状况的一系列校准数据被增加,其中注释指示相关数据和非相关数据之间的截止。
    • 54. 发明授权
    • Online document clustering using TFIDF and predefined time windows
    • 使用TFIDF和预定义时间窗口的在线文档集群
    • US07711668B2
    • 2010-05-04
    • US12072254
    • 2008-02-25
    • Klaus BrinkerFabian MoerchenBernhard GlomannClaus Neubauer
    • Klaus BrinkerFabian MoerchenBernhard GlomannClaus Neubauer
    • G06N5/00
    • G06F17/30707
    • Documents from a data stream are clustered by first generating a feature vector for each document. A set of cluster centroids (e.g., feature vectors of their corresponding clusters) are retrieved from a memory based on the feature vector of the document and a relative age of each of the cluster centroids. The centroids may be retrieved by retrieving a set of cluster identifiers from a cluster table, the cluster identifiers each indicative of a respective cluster centroid, and retrieving the cluster centroids corresponding to the retrieved cluster identifiers from a memory. A list of cluster identifiers in the cluster table may be maintained based on the relative age of cluster centroids corresponding to the cluster identifiers. Cluster identifiers that correspond to cluster centroids with a relative age exceeding a predetermined threshold are periodically removed from the list of cluster identifiers.
    • 通过首先为每个文档生成特征向量来聚集来自数据流的文档。 基于文档的特征向量和每个聚类中心的相对年龄,从存储器中检索一组聚类中心(例如,其对应的聚类的特征向量)。 可以通过从集群表中检索一组集群标识符来检索质心,每个集群标识符指示相应的集群质心,并且从存储器中检索与所检索的集群标识符相对应的集群质心。 可以基于与集群标识符对应的集群质心的相对年龄来维护集群表中的集群标识符的列表。 对应于具有相对年龄超过预定阈值的聚类中心的群集标识符周期性地从群集标识符列表中移除。
    • 57. 发明申请
    • System and Method for Case-Based Multilabel Classification and Ranking
    • 基于案例的多标签分类和排名的系统与方法
    • US20080010226A1
    • 2008-01-10
    • US11764824
    • 2007-06-19
    • Klaus BrinkerClaus Neubauer
    • Klaus BrinkerClaus Neubauer
    • G06F15/18
    • G05B23/0229G06K9/6284G06N99/005
    • The present invention provides methods and apparatus for determining and utilizing case-based ranking methods, such as methods for machine condition monitoring. Specifically, the present invention provides a method for identifying and prioritizing labeled data. The method allows a monitored system to be associated with a calibrated and ordered set of states. Further, in machine condition monitoring, the machine condition is associated with the entire set of states in a particular order with one or more relevance zero-points That is, a ranked set of calibrated data describing machine conditions is augmented with an annotation indicating a cut-off between relevant and non-relevant data.
    • 本发明提供了用于确定和利用基于案例的排序方法的方法和装置,例如机器状态监视的方法。 具体地,本发明提供了一种用于识别和标记数据的优先级的方法。 该方法允许被监视系统与校准的和有序的状态集相关联。 此外,在机器状态监视中,机器状态与具有一个或多个相关性零点的特定顺序的整个状态集合相关联,即,描述机器状态的一组排列的校准数据用指示切割的注释来增加 在相关和非相关数据之间。
    • 60. 发明授权
    • System and method for modeling multilabel classification and ranking
    • 多层分类和排序建模的系统和方法
    • US08200592B2
    • 2012-06-12
    • US11668676
    • 2007-01-30
    • Klaus BrinkerClaus Neubauer
    • Klaus BrinkerClaus Neubauer
    • G06N5/00
    • G05B13/048G05B23/0245
    • The present invention provides methods and apparatus for determining and utilizing detection models, such as models for machine condition monitoring. Specifically, the present invention provides a method for identifying and prioritizing labeled data. The model allows a monitored system to be associated with a calibrated and ordered set of states. Further, in machine condition monitoring, the machine condition is associated with the entire set of states in a particular order with a relevance zero-point. That is, a ranked set of calibrated data describing machine conditions is augmented with an annotation indicating a cut-off between relevant and non-relevant data.
    • 本发明提供了用于确定和利用检测模型的方法和装置,例如用于机器状态监测的模型。 具体地,本发明提供了一种用于识别和标记数据的优先级的方法。 该模型允许被监视的系统与校准的和有序的状态集相关联。 此外,在机器状态监视中,机器状态与具有相关性零点的特定顺序的整个状态集相关联。 也就是说,描述机器状况的一系列校准数据被增加,其中注释指示相关数据和非相关数据之间的截止。