会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明授权
    • Stress compensation systems and methods in differential sensors
    • 差动传感器中的应力补偿系统和方法
    • US09410820B2
    • 2016-08-09
    • US13540081
    • 2012-07-02
    • Udo AusserlechnerMario Motz
    • Udo AusserlechnerMario Motz
    • G01D3/02
    • G01D3/021
    • Embodiments relate to stress compensation in differential sensors. In an embodiment, instead of compensating for stress on each sensor element independently, stress compensation circuitry aims to remove stress-related mismatch between two sensor elements using the sensor elements themselves to detect the mismatch. A circuit can be implemented in embodiments to detect mechanical stress-related mismatch between sensor elements using the sensor elements, and tune the output signal by a compensation factor to eliminate the mismatch. Embodiments are therefore less complicated and less expensive than conventional approaches. While embodiments have applicability to virtually any differential sensor, including magnetic field, pressure, temperature, current and speed, an example embodiment discussed herein relates to magnetic field.
    • 实施例涉及差动传感器中的应力补偿。 在一个实施例中,代替独立地补偿每个传感器元件上的应力,应力补偿电路旨在消除使用传感器元件本身的两个传感器元件之间的应力相关失配,以检测失配。 在实施例中可以实现电路以使用传感器元件检测传感器元件之间的机械应力相关失配,并且通过补偿因子来调整输出信号以消除不匹配。 因此,实施例比常规方法更不复杂和便宜。 虽然实施例可适用于几乎任何包括磁场,压力,温度,电流和速度的差分传感器,但本文讨论的示例实施例涉及磁场。
    • 52. 发明授权
    • 3-D magnetic sensor
    • 3-D磁传感器
    • US09000763B2
    • 2015-04-07
    • US13036194
    • 2011-02-28
    • Udo Ausserlechner
    • Udo Ausserlechner
    • G01R33/09G01R35/00G01B7/30H01L43/06G01R33/02H01L43/08
    • G01R33/0206G01R33/077G01R33/09H01L43/06H01L43/08
    • One embodiment of the present invention relates to a magnetic field sensor comprising a squat soft-magnetic body disposed on a surface of a substrate comprising a magnetic sensor array having a plurality of spatially diverse magnetic sensor elements disposed in a predetermined configuration. In the presence of an external magnetic field the squat soft-magnetic body becomes magnetized to generate a reactionary magnetic field. The plurality of magnetic sensor elements are respectively configured to measure a magnetic field value of a superposition of the external magnetic field and the reactionary magnetic field along a first axis (e.g., a z-axis), resulting in a plurality of spatially diverse measurements of the magnetic field component along the first axis. The plurality of spatially diverse measurements may be used to compute magnetic field components of the external magnetic field along a plurality of axes (e.g., x-axis, y-axis, and z-axis).
    • 本发明的一个实施例涉及一种磁场传感器,其包括设置在基板的表面上的蹲下软磁体,其包括具有以预定构造设置的多个空间不同的磁传感器元件的磁传感器阵列。 在存在外部磁场的情况下,蹲下的软磁体变得磁化以产生反应磁场。 多个磁传感器元件分别被构造成测量沿着第一轴(例如z轴)的外部磁场和反作用磁场的叠加的磁场值,导致多个空间上不同的测量 沿着第一轴的磁场分量。 可以使用多个空间不同的测量来沿着多个轴(例如,x轴,y轴和z轴)计算外部磁场的磁场分量。
    • 53. 发明授权
    • Vertical hall sensor with high electrical symmetry
    • 垂直霍尔传感器具有高电对称性
    • US08988072B2
    • 2015-03-24
    • US13187970
    • 2011-07-21
    • Udo Ausserlechner
    • Udo Ausserlechner
    • G01R33/07G01B7/30H01L43/06
    • G01R33/077G01R33/075H01L43/06H01L43/065
    • A vertical Hall sensor includes a Hall effect region and a plurality of contacts formed in or on a surface of the Hall effect region. The plurality of contacts are arranged in a sequence along a path extending between a first end and a second end of the Hall effect region. The plurality of contacts includes at least four spinning current contacts and at least two supply-only contacts. The spinning current contacts are configured to alternatingly function as supply contacts and sense contacts according to a spinning current scheme. The at least four spinning current contacts are arranged along a central portion of the path. The at least two supply-only contacts are arranged on both sides of the central portion in a distributed manner and are configured to supply electrical energy to the Hall effect region according to an extension of the spinning current scheme.
    • 垂直霍尔传感器包括霍尔效应区域和形成在霍尔效应区域的表面中或之上的多个触点。 多个触点沿着在霍尔效应区域的第一端和第二端之间延伸的路径排列。 多个触点包括至少四个旋转电流触点和至少两个仅供应触点。 旋转电流触点被配置为根据旋转电流方案交替地用作电源触点和感测触点。 至少四个旋转电流触点沿着路径的中心部分布置。 所述至少两个仅供应的触点以分布的方式布置在所述中心部分的两侧,并且被配置为根据所述纺丝电流方案的扩展向霍尔效应区域提供电能。
    • 56. 发明申请
    • MAGNETORESISTIVE SENSOR SYSTEMS AND METHODS HAVING A YAW ANGLE BETWEEN PREMAGNETIZATION AND MAGNETIC FIELD DIRECTIONS
    • 磁传感器系统及其预处理与磁场方向之间的角度方法
    • US20140028307A1
    • 2014-01-30
    • US13559206
    • 2012-07-26
    • Udo Ausserlechner
    • Udo Ausserlechner
    • G01R33/02G01R33/09
    • G01R33/096
    • Embodiments relate to magnetoresistive (xMR) sensors which provide a yaw angle between a reference premagnetization direction of the sensor layer and the magnetic field to be detected, or between a direction of a bias magnetic field and the magnetic field to be detected. In an embodiment, an xMR sensor is rotated or tilted with respect to a direction of a magnetic field to be sensed such that a premagnetization direction of the reference premagnetization layer of the xMR sensor is also rotated or tilted at some yaw angle with respect to the direction of the magnetic field. In another embodiment, a bias magnet or other source is used with sensors not having premagnetization or reference layers, such as anisotropic magnetoresistive (AMR) sensors, and the direction of the bias magnetic field is also tilted or rotated with respect to the direction of the magnetic field to be detected.
    • 实施例涉及提供传感器层的参考预磁化方向和要检测的磁场之间或偏置磁场的方向与要检测的磁场之间的偏转角的磁阻(xMR)传感器。 在一个实施例中,xMR传感器相对于要感测的磁场的方向旋转或倾斜,使得xMR传感器的参考预磁化层的预磁化方向也相对于 磁场方向。 在另一个实施例中,偏置磁体或其它源与不具有预磁化或参考层的传感器(例如各向异性磁阻(AMR)传感器)一起使用,并且偏置磁场的方向也相对于 要检测的磁场。
    • 57. 发明申请
    • Vertical Hall Device Comprising a Slot in the Hall Effect Region
    • 包括霍尔效应区域中的槽的垂直霍尔设备
    • US20130342196A1
    • 2013-12-26
    • US13531076
    • 2012-06-22
    • Udo Ausserlechner
    • Udo Ausserlechner
    • H01L29/82G01R33/07
    • H01L43/065G01R33/07G01R33/077
    • A vertical Hall device includes a Hall effect region, a separator, a first plurality of contacts, and a second plurality of contacts. The Hall effect region includes a first straight section, a second straight section that is offset parallel to the first straight section, and a connecting section that connects the first straight section and the second straight section. The separator separates a portion of the first straight section from a portion of the second straight section. The first and second plurality of contacts are arranged in or at the surface of the first and second straight sections, respectively. With respect to a first clock phase of a spinning current scheme, the first plurality of contacts comprises a first supply contact and a first sense contact. The second plurality of contacts comprises a second supply contact and a second sense contact.
    • 垂直霍尔装置包括霍尔效应区域,分离器,第一多个触点和第二多个触点。 霍尔效应区域包括第一直线部分,平行于第一直线部分偏移的第二直线部分和连接第一直线部分和第二直线部分的连接部分。 分离器将第一直线部分的一部分与第二直线部分的一部分分开。 第一和第二多个触点分别布置在第一和第二直线部分的表面中或其表面上。 关于旋转电流方案的第一时钟相位,第一多个触点包括第一电源触点和第一感测触点。 第二多个触点包括第二电源触点和第二感测触点。
    • 58. 发明申请
    • VERTICAL HALL SENSOR WITH SERIES-CONNECTED HALL EFFECT REGIONS
    • 垂直孔传感器,带有连接的霍尔效应区域
    • US20130342194A1
    • 2013-12-26
    • US13530235
    • 2012-06-22
    • Mario MotzUdo Ausserlechner
    • Mario MotzUdo Ausserlechner
    • H01L27/22H01L43/06G01R33/07
    • G01R33/077G01R33/066G01R33/07H01L27/22H01L43/065
    • A vertical Hall sensor includes first and second vertical Hall effect regions in a semiconductor substrate, with first and second pluralities of contacts arranged at one side of the first or second vertical Hall effect regions, respectively. The second vertical Hall effect region is connected in series with the first vertical Hall effect region regarding a power supply. The vertical Hall sensor further includes first and second layers adjacent to the first and second vertical Hall effect regions at a side other than a side of the first or second pluralities of contacts. The first and second layers have different doping properties than the first and second vertical Hall effect regions and insulate the first and second vertical Hall effect regions from a bulk of the semiconductor substrate by at least one reverse-biased p-n junction per vertical Hall effect region during an operation of the vertical Hall sensor.
    • 垂直霍尔传感器包括半导体衬底中的第一和第二垂直霍尔效应区域,第一和第二多个触点分别布置在第一或第二垂直霍尔效应区域的一侧。 第二垂直霍尔效应区域与关于电源的第一垂直霍尔效应区域串联连接。 垂直霍尔传感器还包括在除了第一或第二多个触点的一侧以外的一侧与第一和第二垂直霍尔效应区域相邻的第一和第二层。 第一和第二层具有与第一和第二垂直霍尔效应区域不同的掺杂特性,并且使绝缘半导体衬底的第一和第二垂直霍尔效应区域与每个垂直霍尔效应区域至少一个反向偏置pn结隔离 垂直霍尔传感器的操作。
    • 60. 发明申请
    • CURRENT SENSOR PACKAGE, ARRANGEMENT AND SYSTEM
    • 电流传感器封装,布置和系统
    • US20130138372A1
    • 2013-05-30
    • US13306566
    • 2011-11-29
    • Udo Ausserlechner
    • Udo Ausserlechner
    • G06F19/00G01R33/02
    • G01R15/207G01R35/005
    • Embodiments of the present invention provide a current sensor package for sensing a current flowing in a primary conductor of a substrate. The current sensor package includes a magnetic field sensor, a calibration current provider and a controller. The calibration current provider is configured to provide a calibration current for a calibration conductor of the substrate, wherein the calibration conductor and the primary conductor are arranged in a defined spatial relation to each other on the substrate. The magnetic field sensor element is configured to sense a magnetic field of the primary current flowing in the primary conductor in order to provide a primary sensor signal and to sense a magnetic field of the calibration current flowing through the calibration conductor to provide a calibration sensor signal. The controller is configured to receive the primary sensor signal and the calibration sensor signal, and to calibrate the primary sensor signal based on the calibration sensor signal and the defined spatial relation between the primary conductor and the calibration conductor.
    • 本发明的实施例提供一种用于感测在衬底的主导体中流动的电流的电流传感器封装。 电流传感器封装包括磁场传感器,校准电流提供器和控制器。 校准电流提供器被配置为为衬底的校准导体提供校准电流,其中校准导体和主导体以基板上彼此限定的空间关系布置。 磁场传感器元件被配置为感测在主导体中流动的初级电流的磁场,以便提供初级传感器信号并感测流过校准导体的校准电流的磁场,以提供校准传感器信号 。 控制器被配置为接收主传感器信号和校准传感器信号,并且基于校准传感器信号和主导体和校准导体之间的限定的空间关系校准主传感器信号。