会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 52. 发明申请
    • Mesa edge shielding trench Schottky rectifier and method of manufacture thereof
    • Mesa边缘屏蔽沟槽肖特基整流器及其制造方法
    • US20120168893A1
    • 2012-07-05
    • US12982714
    • 2010-12-30
    • Wei LiuFan WangXiaozhong Sun
    • Wei LiuFan WangXiaozhong Sun
    • H01L29/47H01L21/20
    • H01L29/8725H01L29/66143
    • A mesa edge shielding trench Schottky rectifier includes a semiconductor substrate; an epitaxial layer grown on the first surface of the semiconductor substrate; a plurality of trenches spaced from each other and extended into the epitaxial layer, wherein an epitaxial region between two adjacent trenches forms the silicon mesa; a polysilicon region, having a T-shape, is separated from an inner wall of each of the trenches and a top surface of the epitaxial layer by an oxide layer, wherein a width of the top surface of the polysilicon region is bigger than an open size of each of the trenches; an anode electrode, deposited on an entire structure, forming an ohmic contact on the top surface of the polysilicon region and a Schottky contact on an exposed surface of the epitaxial layer; and a cathode electrode, deposited on the second surface of the semiconductor substrate, forming an ohmic contact thereon.
    • 台面边缘屏蔽沟槽肖特基整流器包括半导体衬底; 在半导体衬底的第一表面上生长的外延层; 多个沟槽彼此间隔开并延伸到外延层中,其中两个相邻沟槽之间的外延区域形成硅台面; 具有T形的多晶硅区域通过氧化物层与每个沟槽的内壁和外延层的顶表面分离,其中多晶硅区域的顶表面的宽度大于开放的 每个沟槽的大小; 沉积在整个结构上的阳极,在多晶硅区域的顶表面上形成欧姆接触,在外延层的暴露表面上形成肖特基接触; 和沉积在半导体衬底的第二表面上的阴极,在其上形成欧姆接触。
    • 54. 发明申请
    • DYNAMIC OPTIMIZATION FOR CONDITIONAL COMMIT
    • 动态优化条件咨询
    • US20120079245A1
    • 2012-03-29
    • US12890638
    • 2010-09-25
    • Cheng WangEdson BorinYoufeng WuShiliang HuWei LiuMauricio Breternitz, JR.
    • Cheng WangEdson BorinYoufeng WuShiliang HuWei LiuMauricio Breternitz, JR.
    • G06F9/312G06F9/38G06F9/30
    • G06F9/3842G06F8/52G06F9/3004G06F9/30072G06F9/30087G06F9/30116G06F9/3857
    • An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
    • 本文描述了用于有条件地提交和/或推测性检查点事务的装置和方法,这可能导致事务的动态调整大小。 在二进制代码的动态优化期间,插入事务以提供存储器排序保护措施,这使得动态优化器能够更积极地优化代码。 并且条件提交可以有效地执行动态优化代码,同时尝试防止事务用尽硬件资源。 虽然投机检查点能够在中止交易后快速有效地恢复。 处理器硬件适于支持事务的动态调整大小,诸如包括识别条件提交指令的解码器,推测性检查点指令或两者。 并且处理器硬件还适于执行响应于解码这样的指令来支持条件提交或推测性检查点的操作。
    • 60. 发明申请
    • REVERSE TIME MIGRATION WITH ABSORBING AND RANDOM BOUNDARIES
    • 反向时间移动与吸收和随机边界
    • US20110317519A1
    • 2011-12-29
    • US12822872
    • 2010-06-24
    • Wei Liu
    • Wei Liu
    • G01V1/28
    • G01V1/28G01V2210/51G01V2210/67G01V2210/679
    • Images relating to a subsurface region may be generated based at least in part on a backward propagated source wavefield and a receiver wavefield. A source wavefield may be propagated from an initial wavefield-state forward in time, from an initial time-state to a final time-state, through an earth model associated with the subsurface region. The backward propagated source wavefield may be determined by propagating the source wavefield backward in time, from the final time-state to the initial time-state, through the earth model to reconstruct the initial wavefield-state. The receiver wavefield may be propagated, from the final time-state, through the earth model. The earth model may include at least one boundary region that can be defined as having one or more of absorbing characteristics, boosting characteristics, randomly perturbed characteristics, and/or other characteristics. As such, wavefields may be dampened, amplified, randomly scattered, and/or otherwise altered at the at least one boundary region. These wavefields may be used for constructing images of subsurface regions with improved signal-to-noise ratios.
    • 可以至少部分地基于反向传播源波场和接收器波场来生成与地下区域有关的图像。 源波场可以从初始波场状态通过与地下区域相关联的地球模型在时间上从初始时间状态向最终时间状态传播。 反向传播的源波场可以通过在时间上从最终时间状态向初始时间状态向后传播源波场,通过地球模型来重建初始波场状态来确定。 接收机波场可以从最终时间状态传播到地球模型。 地球模型可以包括至少一个边界区域,其可被定义为具有一个或多个吸收特性,增强特性,随机扰动特征和/或其它特征。 因此,波场可以在至少一个边界区域被衰减,放大,随机散射和/或以其它方式改变。 这些波场可用于构建具有改善的信噪比的地下区域的图像。