会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明申请
    • CONTAINER HANDLING VEHICLE WITH FIRST AND SECOND SECTIONS WITH MOTOR IN SECOND SECTION
    • US20210147145A1
    • 2021-05-20
    • US17047293
    • 2018-10-11
    • Autostore Technology AS
    • Trond Austrheim
    • B65G1/04B65G1/137
    • A container handling vehicle for picking up storage containers from a three-dimensional grid of an underlying storage system includes a first set of wheels, arranged at opposite portions of a vehicle body of the container handling vehicle, for moving the vehicle along a first direction on a rail system of the grid; and a second set of wheels, arranged at opposite portions of the vehicle body, for moving the vehicle along a second direction on the rail system of the grid. The second direction is being perpendicular to the first direction. The vehicle body includes walls on all sides forming a footprint defined by horizontal peripheries in the first and second directions of the vehicle body. The container handling vehicle further includes a first section and a second section arranged side-by-side such that a centre point of a footprint of the first section is arranged off centre relative a centre point of the footprint of the vehicle body, and a size ratio of the footprint of the first section relative a footprint of the second section is at least 2:1. The first section is configured to accommodate a storage container, and the second section includes an assembly of motors for driving at least one wheel of each of the sets of wheels.
    • 52. 发明申请
    • A METHOD AND SYSTEM FOR CONTROLLING THE OPERATION OF CONTAINER HANDLING VEHICLES AND DRONES SERVING AN AUTOMATED STORAGE AND RETRIEVAL SYSTEM
    • US20210130090A1
    • 2021-05-06
    • US17251760
    • 2019-06-11
    • Autostore Technology AS
    • Ragnar StuhaugKarl HattelandIngvar FagerlandØystein GjerdevikTrond AustrheimSynnøve Matre
    • B65G1/04
    • The operation of container handling vehicles and remotely operated specialized container handling vehicles are controlled by a method such that total elapsed time or waiting time cost for transferring specified storage containers between them is minimal or optimal. The specialized container handling vehicles are operating at a level below an automated storage and retrieval system having a framework structure defining a storage grid for storing storage containers in grid cells. The storage containers are stored and retrieved by container handling vehicles running on top of the storage grid. At least one operational controller, which is in communication with a first type of controller in each container handling vehicle and a second type of controller in each specialized container handling vehicle, performs the followings steps: when a specified storage container is to be transferred from a storage column and its corresponding grid cell to a specialized container handling vehicle: assigning and instructing a container handling vehicle to pick up the storage container from the grid cell and lower it to a selected port, located at the lower end of an identified free delivery column by transmitting instructions to the first type of controller of the assigned container handling vehicle, where the port selected is included as a variable in a weighting function together with time and waiting cost to derive a trade-off of the container handling vehicle and the specialized container handling vehicle having the best matching travel time to the port; moving the container handling vehicle to the grid cell, picking up the storage container and transporting it to a grid cell of the delivery column where the port is; transmitting a signal to the specialized container handling vehicles comprising information of the selected port at a first location and when the storage container will be available at the port; based on responses from the specialized container handling vehicles, assigning and instructing a specialized container handling vehicle to retrieve the specified storage container at the selected port; moving the assigned specialized container handling vehicle to the selected port at the first location, picking up the storage container and bringing it to a second location; and/or, when a specified storage container is to be transferred to a grid cell, for storage in its corresponding storage column, by a specialized container handling vehicle: determining which port at a first location that is to be used, where the port selected is included as a variable in a weighting function together with time and waiting cost to derive a trade-off of the container handling vehicle and the specialized container handling vehicle having the best matching travel time to the port; transmitting instructions to the second type of controller of the specialized container handling vehicle, to transport the storage container from its current location representing the second location, to said determined port at the first location; moving the specialized container handling vehicle from the second location to the determined port at the first location; transmitting a signal to the container handling vehicles comprising information of the determined port to retrieve the storage container from; based on responses from the container handling vehicles, assigning and instructing a container handling vehicle to lift and retrieve the specified storage container from the determined port to be used at the first location; lifting the storage container from the determined port through the delivery column and moving the container handling vehicle for transporting the storage container to a grid cell corresponding to the storage column the specified storage container is to be transferred to.
    • 57. 发明申请
    • ROBOT FOR TRANSPORTING STORAGE BINS
    • US20180244468A1
    • 2018-08-30
    • US15964084
    • 2018-04-27
    • Autostore Technology AS
    • Ingvar HognalandIvar FjeldheimTrond AustrheimBorge Bekken
    • B65G1/04
    • The invention concerns a remotely operated vehicle assembly for picking up storage bins from a storage system and a method for change of vehicle direction. The vehicle assembly comprises a vehicle body displaying a cavity being suitable for receiving a storage bin stored within the storage system, a vehicle lifting device being connected at least indirectly to the vehicle body and suitable for lifting the storage bin into the cavity, a displacement arrangement comprising inter alia a displacement motor situated above the cavity which is configured to at least provide the power that is necessary in order to displace one or both of the first set of vehicle rolling means and the second set of vehicle rolling means between a displaced state where the relevant vehicle rolling means is displaced away from the underlying storage system during use, and a non-displaced state where the relevant vehicle rolling means is in contact with the underlying storage system during use, and driving means coupled to the displacement arrangement. The driving means further comprises a first set of vehicle rolling means connected to the vehicle body allowing movement of the vehicle along a first direction (X) within the storage system during use and a second set of vehicle rolling means connected to the vehicle body allowing movement of the vehicle along a second direction (Y) in the storage system during use, wherein the second direction (Y) is perpendicular to the first direction (X).
    • 60. 发明授权
    • Automated storage and retrieval system
    • US11597597B2
    • 2023-03-07
    • US16614175
    • 2018-05-16
    • Autostore Technology AS
    • Trond AustrheimIvar FjeldheimIngvar Fagerland
    • B65G1/04B65G1/06B61B5/02B66C13/00B66C19/00B60L50/64B60L53/16B60L53/18
    • The present invention relates to automated storage and retrieval system comprising: a track system comprising a first set of parallel tracks arranged in a horizontal plane and extending in a first direction, and a second set of parallel tracks arranged in the horizontal plane and extending in a second direction which is orthogonal to the first direction, which first and second sets of tracks form a grid pattern in the horizontal plane comprising a plurality of adjacent grid cells, each comprising a grid opening defined by a pair of adjacent tracks of the first set of tracks and a pair of adjacent tracks of the second set of tracks; a plurality of stacks of storage containers arranged in storage columns located beneath the track system, wherein each storage column is located vertically below a grid opening; a plurality of container handling vehicles for lifting and moving storage containers stacked in the stacks, the container handling vehicles being configured to move laterally on the track system above the storage columns to access the storage containers via the grid openings, wherein each of the plurality of container handling vehicles has a footprint with a horizontal extension which is equal to or less than the horizontal extension of a grid cell and comprises: a wheel assembly for guiding the container handling vehicle along the track system and a container-receiving storage space arranged within the footprint of the container handling vehicle for accommodating a storage container. Each container handling vehicle comprises a protruding section which extends horizontally beyond the footprint of the container handling vehicle and, when the container handling vehicle is positioned above a grid cell, into a neighbouring grid cell.
      The present invention also relates to a container handling vehicle for such an automated storage and retrieval system.