会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 44. 发明申请
    • MANUFACTURING METHOD OF SEMICONDUCTOR PHOTONIC DEVICE SUBSTRATE
    • 半导体光电器件基板的制造方法
    • US20110003413A1
    • 2011-01-06
    • US12766684
    • 2010-04-23
    • Toshihiro MorisawaTakehiko TaniHisataka NagaiTakashi Furuya
    • Toshihiro MorisawaTakehiko TaniHisataka NagaiTakashi Furuya
    • H01L21/20
    • C23C16/56H01L21/02395H01L21/02543H01L33/007H01L33/46
    • In a manufacturing method of a semiconductor photonic device substrate, before multi-layer films different in material composition are successively and gradually crystal-grown in one chamber, an inter-layer growth rate model showing a relation in growth rate between each layer is defined, a growth rate of a film corresponding to at least one or more layers is obtained by actual crystal growth using an individual substrate, a growth rate of a film corresponding to other layers is estimated from the obtained growth rate by the inter-layer growth rate model, and a growth time is determined in accordance with a film thickness of each layer of the semiconductor photonic device substrate based on the actually obtained growth rate and the estimated growth rate. These steps are carried out by using a computer system connected to an MOCVD equipment, and then, a crystal growth of the semiconductor photonic device substrate is performed.
    • 在半导体光子器件衬底的制造方法中,在不同材料组成的多层膜在一个室中连续逐渐晶体生长的情况下,定义表示各层之间的生长速度关系的层间生长速率模型, 通过使用单个基板的实际晶体生长获得对应于至少一个或多个层的膜的生长速率,通过层间生长速率模型从获得的生长速率估计与其它层相对应的膜的生长速率 根据实际获得的生长速度和估计的生长速度,根据半导体光子器件基板的各层的膜厚确定生长时间。 这些步骤通过使用连接到MOCVD设备的计算机系统进行,然后执行半导体光子器件衬底的晶体生长。
    • 46. 发明申请
    • DIGITAL METAMORPHIC ALLOYS FOR GRADED BUFFERS
    • 用于分级缓冲器的数字元素合金
    • US20100221512A1
    • 2010-09-02
    • US12395564
    • 2009-02-27
    • Kenneth E. LeeEugene A. Fitzgerald
    • Kenneth E. LeeEugene A. Fitzgerald
    • B32B7/02B05D1/36
    • H01L21/02543H01L21/02395H01L21/02461H01L21/02463H01L21/02507H01L21/0251H01L21/0262Y10T428/2495
    • Digital metamorphic alloy (DMA) buffer structures for transitioning from a bottom crystalline layer to a lattice mismatched top crystalline layer, and methods for manufacturing such layers are described. In some embodiments, a layered crystalline structure includes a first layer of a first crystalline material having a first in-plane lattice constant and a second layer of a second crystalline material disposed over the first layer and having a second in-plane lattice constant that is lattice mismatched with the first crystalline material. Multiple sets of buffer layers may be disposed between the first layer and the second layer. Each set is a digital metamorphic alloy including a buffer layer of a third crystalline material and a buffer layer of a fourth crystalline material where an effective in-plane lattice constant of each set falls between the first lattice of the first layer and the second lattice constant of the second layer.
    • 描述了从底部结晶层转变为晶格失配顶部晶体层的数字变质合金(DMA)缓冲结构以及制造这种层的方法。 在一些实施例中,层状晶体结构包括具有第一面内晶格常数的第一晶体材料的第一层和设置在第一层上并具有第二平面晶格常数的第二晶体材料的第二层, 晶格与第一结晶材料不匹配。 可以在第一层和第二层之间设置多组缓冲层。 每组是包含第三结晶材料的缓冲层和第四晶体材料的缓冲层的数字变质合金,其中每组的有效面内晶格常数落在第一层的第一晶格和第二晶格常数之间 的第二层。
    • 48. 发明授权
    • GaAs semiconductor substrate and fabrication method thereof
    • GaAs半导体衬底及其制造方法
    • US07619301B2
    • 2009-11-17
    • US11907017
    • 2007-10-09
    • Takayuki NishiuraYoshio MezakiYusuke HorieYasuaki Higuchi
    • Takayuki NishiuraYoshio MezakiYusuke HorieYasuaki Higuchi
    • H01L29/201C23G1/02
    • H01L21/02052C30B29/42C30B33/10H01L21/02008H01L21/02395H01L21/0254H01L21/3245
    • A GaAs semiconductor substrate includes a surface layer. When an atomic ratio is to be calculated using a 3d electron spectrum of Ga atoms and As atoms measured at the condition of 10° for the photoelectron take-off angle θ by X-ray photoelectron spectroscopy, the structural atomic ratio of all Ga atoms to all As atoms (Ga)/(As) at the surface layer is at least 0.5 and not more than 0.9, the ratio of As atoms bound with O atoms to all Ga atoms and all As atoms (As—O)/{(Ga)+(As)} at the surface layer is at least 0.15 and not more than 0.35, and the ratio of Ga atoms bound with O atoms to all Ga atoms and all As atoms (Ga—O)/{(Ga)+(As)} at the surface layer is at least 0.15 and not more than 0.35. Accordingly, there is provided a GaAs semiconductor substrate having a surface cleaned to an extent allowing removal of impurities and oxides at the surface by at least thermal cleaning of the substrate.
    • GaAs半导体衬底包括表面层。 当使用通过X射线光电子能谱测定的光电子取出角θ的10°条件下的Ga原子和As原子的3d电子光谱来计算原子比时,所有Ga原子与 表面层的所有As原子(Ga)/(As)为至少0.5且不大于0.9,与O原子键合的所有Ga原子和所有As原子(As-O)/ {(Ga )+(As)}为0.15以上且0.35以下,与O原子键合的Ga原子与所有Ga原子和所有As原子(Ga-O)/ {(Ga)+( As)}为0.15以上0.35以下。 因此,提供了一种GaAs半导体衬底,其具有通过至少对衬底进行热清洁的方式清洁到允许在表面去除杂质和氧化物的程度的表面。