会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明申请
    • MEASURING CONTENT COHERENCE AND MEASURING SIMILARITY
    • 测量内容的一致性和测量的相似性
    • US20140205103A1
    • 2014-07-24
    • US14237395
    • 2012-08-07
    • Lie LuMingqing Hu
    • Lie LuMingqing Hu
    • G10L25/51H04R29/00
    • G10L25/51G10L19/038H04R29/00
    • Embodiments for measuring content coherence and embodiments for measuring content similarity are described. Content coherence between a first audio section and a second audio section is measured. For each audio segment in the first audio section, a predetermined number of audio segments in the second audio section are determined. Content similarity between the audio segment in the first audio section and the determined audio segments is higher than that between the audio segment and all the other audio segments in the second audio section. An average of the content similarity between the audio segment in the first audio section and the determined audio segments is calculated. The content coherence is calculated as an average, the maximum or the minimum of the averages calculated for the audio segments in the first audio section. The content similarity may be calculated based on Dirichlet distribution.
    • 描述了用于测量内容相干性的实施例和用于测量内容相似性的实施例。 测量第一音频部分和第二音频部分之间的内容相干性。 对于第一音频部分中的每个音频段,确定第二音频部分中的预定数量的音频片段。 第一音频部分中的音频片段与所确定的音频片段之间的内容相似性高于音频片段和第二音频片段中的所有其他音频片段之间的内容相似度。 计算第一音频部分中的音频片段与确定的音频片段之间的内容相似度的平均值。 内容相干性被计算为平均值,对于第一音频部分中的音频段计算的平均值的最大值或最小值。 内容相似性可以基于Dirichlet分布来计算。
    • 43. 发明申请
    • Methods and Apparatus for Detecting a Repetitive Pattern in a Sequence of Audio Frames
    • 用于检测音频帧序列中的重复模式的方法和装置
    • US20130046399A1
    • 2013-02-21
    • US13564302
    • 2012-08-01
    • Lie LuBin cheng
    • Lie LuBin cheng
    • G06F17/00
    • G06F17/30743G10L25/03G10L25/45G10L25/51
    • Methods and apparatus for detecting a repetitive pattern in a sequence of audio frames are described. Similarity values of a first similarity matrix with first resolution for the sequence are calculated. An adaptive threshold is estimated from the similarity values for classifying the similarity values into repetition or non-repetition. For each of one or more offsets of a second similarity matrix with second resolution higher that the first resolution, similarity values of the second similarity matrix corresponding to the offset are calculated. Then the calculated similarity values are binarized with the adaptive threshold to obtain binarized data. Finally, the repetitive pattern is detected from the binarized data. The requirement on memory may be reduced because less data are stored in detecting the repetitive pattern.
    • 描述了用于检测音频帧序列中的重复模式的方法和装置。 计算具有序列的第一分辨率的第一相似矩阵的相似度值。 从相似性值估计自适应阈值,用于将相似度值分类为重复或非重复。 对于具有第二分辨率高于第一分辨率的第二相似度矩阵的一个或多个偏移中的每一个,计算与偏移相对应的第二相似度矩阵的相似度值。 然后将所计算的相似度值用自适应阈值二值化,以获得二值化数据。 最后,从二值化数据中检测重复模式。 可以减少对存储器的要求,因为在检测重复模式时存储较少的数据。
    • 45. 发明授权
    • Automatic music mood detection
    • 自动音乐心情检测
    • US07115808B2
    • 2006-10-03
    • US11265685
    • 2005-11-02
    • Lie LuHong-Jiang Zhang
    • Lie LuHong-Jiang Zhang
    • G10H1/40G10H7/00G06F17/00
    • G10H1/00G10H2210/071G10H2240/085
    • A system and methods use music features extracted from music to detect a music mood within a hierarchical mood detection framework. A two-dimensional mood model divides music into four moods which include contentment, depression, exuberance, and anxious/frantic. A mood detection algorithm uses a hierarchical mood detection framework to determine which of the four moods is associated with a music clip based on the extracted features. In a first tier of the hierarchical detection process, the algorithm determines one of two mood groups to which the music clip belongs. In a second tier of the hierarchical detection process, the algorithm then determines which mood from within the selected mood group is the appropriate, exact mood for the music clip. Benefits of the mood detection system include automatic detection of music mood which can be used as music metadata to manage music through music representation and classification.
    • 系统和方法使用从音乐中提取的音乐特征来检测分层情绪检测框架内的音乐心情。 二维情绪模型将音乐分为四种情绪,包括满足感,抑郁症,繁荣感和焦虑/疯狂。 情绪检测算法使用分级情绪检测框架来基于提取的特征来确定四种情绪中的哪一种与音乐剪辑相关联。 在层次检测过程的第一层中,算法确定音乐剪辑所属的两个心情组之一。 在层次检测过程的第二层中,算法然后确定来自所选择的心情组中的哪个心情是音乐剪辑的适当的精确心情。 情绪检测系统的优点包括自动检测音乐心情,可用作音乐元数据,通过音乐表示和分类来管理音乐。
    • 47. 发明申请
    • Automatic music mood detection
    • 自动音乐心情检测
    • US20050211071A1
    • 2005-09-29
    • US10811281
    • 2004-03-25
    • Lie LuHong-Jiang Zhang
    • Lie LuHong-Jiang Zhang
    • G10H1/00G10H1/40G10H7/00
    • G10H1/00G10H2210/071G10H2240/085
    • A system and methods use music features extracted from music to detect a music mood within a hierarchical mood detection framework. A two-dimensional mood model divides music into four moods which include contentment, depression, exuberance, and anxious/frantic. A mood detection algorithm uses a hierarchical mood detection framework to determine which of the four moods is associated with a music clip based on the extracted features. In a first tier of the hierarchical detection process, the algorithm determines one of two mood groups to which the music clip belongs. In a second tier of the hierarchical detection process, the algorithm then determines which mood from within the selected mood group is the appropriate, exact mood for the music clip. Benefits of the mood detection system include automatic detection of music mood which can be used as music metadata to manage music through music representation and classification.
    • 系统和方法使用从音乐中提取的音乐特征来检测分层情绪检测框架内的音乐心情。 二维情绪模型将音乐分为四种情绪,包括满足感,抑郁症,繁荣感和焦虑/疯狂。 情绪检测算法使用分级情绪检测框架来基于提取的特征来确定四种情绪中的哪一种与音乐剪辑相关联。 在层次检测过程的第一层中,算法确定音乐剪辑所属的两个心情组之一。 在层次检测过程的第二层中,算法然后确定来自所选择的心情组中的哪个心情是音乐剪辑的适当的精确心情。 情绪检测系统的优点包括自动检测音乐心情,可用作音乐元数据,通过音乐表示和分类来管理音乐。