会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 38. 发明授权
    • Device and method for joining metallic tubulars of drilling wells
    • US11504808B2
    • 2022-11-22
    • US16486994
    • 2018-02-13
    • INNOVATIVE WELDING SOLUTIONS B.V.
    • Giordano PinarelloAlessandro Bailini
    • B23K26/282E21B17/00E21B19/16F16L13/02B23K101/06E21B43/10
    • A method for joining metallic well tubulars to be lowered into a wellbore (4) comprises the steps of: a) providing a first well tubular (6) having an upper end surface (6a), and a second well tubular (7) having a lower end surface (7a); b) lowering the first well tubular (6) into the wellbore (4), leaving the upper end thereof outside the wellbore (4); c) setting the second well tubular (7) in an axially aligned position on the first well tubular (6), with the lower end surface (7a) of the second well tubular (7) set against the upper end surface (6a) of the first well tubular (6); d) keeping the first and second well tubulars (6, 7) in said axially aligned position; e) welding the upper end of the first well tubular (6) to the lower end of the second well tubular (7), forming a circumferential weld bead (WL) in a position corresponding to said upper and lower end surfaces (6a, 7a); and f) lowering into the wellbore (4) the first well tubular (6) and the second well tubular (7) welded together. Step e) comprises the operations of: providing at least one laser welding head (13), configured for directing a laser beam (LB) towards a circumferential working zone (WA) that includes an upper end portion of the first well tubular (6) and a lower end portion of the second well tubular (7), the at least one laser welding head (13) being displaceable around the circumferential working zone (WA) according to a respective trajectory of revolution; providing at least one induction-heating device (141, 142), which is displaceable substantially according to the trajectory of revolution of the at least one laser welding head (13), the at least one induction-heating device (141, 142) being set upstream, respectively downstream, of the at least one laser welding head (13), with reference to the direction of revolution (R) of the at least one laser welding head (13); causing revolution of the at least one laser welding head (13) and revolution of the at least one induction-heating device (141, 142), in such a way that: the laser beam (LB) progressively forms the circumferential weld bead (WL); and the at least one induction-heating device (141, 142) supplies heat to a corresponding part (PH1, PH2) of the circumferential working zone (WA), which comprises respective parts of said upper and lower end portions of the respective first and second well tubulars (6, 7), before the laser beam (LB) reaches said corresponding part (PH, PH2), respectively after the laser beam (LB) has reached said corresponding part (PH1, PH2).