会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Quantum key distribution device, quantum key distribution system, and quantum key distribution method
    • 量子密钥分发装置,量子密钥分发系统和量子密钥分发方法
    • US09503257B2
    • 2016-11-22
    • US14622015
    • 2015-02-13
    • Kabushiki Kaisha Toshiba
    • Yoshimichi Tanizawa
    • H04L9/08
    • H04L9/0858H04L9/0852H04L2209/30
    • According to an embodiment, a quantum key distribution device includes a key sharing unit, a correcting unit, a compressor, and a controller. The key sharing unit is configured to generate a shared bit string by using quantum key distribution performed with another quantum key distribution device via a quantum communication channel. The correcting unit is configured to generate a corrected bit string through an error correction process with respect to the shared bit string. The compressor is configured to generate an encryption key through a key compression process with respect to the corrected bit string. The controller is configured to perform a restraining operation in which the total number of bits of encryption keys generated per unit time by the compressor is smaller than the total number of bits of the encryption keys generated per unit time by the compressor in the case of not performing the restraining operation.
    • 根据实施例,量子密钥分配装置包括密钥共享单元,校正单元,压缩器和控制器。 密钥共享单元被配置为通过使用通过量子通信信道与另一个量子密钥分发设备执行的量子密钥分配来生成共享比特串。 校正单元被配置为通过针对共享位串的纠错处理产生校正的位串。 压缩器被配置为通过关于校正的位串的密钥压缩处理生成加密密钥。 控制器被配置为执行限制操作,其中压缩器每单位时间生成的加密密钥的总位数小于在不是的情况下压缩机每单位时间生成的加密密钥的总位数 执行限制操作。
    • 32. 发明申请
    • RECEPTION AND GENERATION OF LIGHT
    • 光的接收和产生
    • US20160337045A1
    • 2016-11-17
    • US15112571
    • 2014-02-06
    • NOKIA TECHNOLOGIES OY
    • David BITAULD
    • H04B10/70H04B10/532H04B10/85
    • H04B10/70G02B27/283H04L9/0852
    • A light input is divided into a plurality of light outputs by a structure comprising a first beam splitter configured to divide the light Input into a first part and a second part, a first polarization beam splitter configured to provide from the first part a first polarized part and a second polarized part, wherein the first polarized part is for providing a first output and the second polarized part for providing a second output, at least one polarization altering device configured to alter the polarization of light in the second part, and at least one second polarization beam splitter configured to receive light altered by respective at least one polarization altering device and provide therefrom at least one third polarized part for providing at least one third output. A light output can be generated based on similar principles in reverse.
    • 光输入通过包括第一分束器的结构被分成多个光输出,第一分束器被配置为将光输入分成第一部分和第二部分,第一偏振分束器被配置为从第一部分提供第一偏振部分 以及第二偏振部分,其中所述第一偏振部分用于提供第一输出,所述第二偏振部分用于提供第二输出;至少一个偏振改变装置,被配置为改变所述第二部分中的光的偏振,以及至少一个 第二偏振分束器被配置为接收由相应的至少一个偏振改变装置改变的光,并从其提供至少一个第三偏振部分,用于提供至少一个第三输出。 相反的原理可以产生光输出。
    • 33. 发明申请
    • METHOD, APPARATUS, AND SYSTEM FOR CLOUD-BASED ENCRYPTION MACHINE KEY INJECTION
    • 用于基于云的加密机关键注射的方法,装置和系统
    • US20160315768A1
    • 2016-10-27
    • US15134105
    • 2016-04-20
    • ALIBABA GROUP HOLDING LIMITED
    • Yingfang FUShuanlin LIU
    • H04L9/08H04L29/06
    • H04L9/0852G06F21/602G06F21/6218H04L9/085H04L63/0428H04L63/06H04L63/061H04L63/0853
    • A cloud-based encryption machine key injection system includes at least one key injection sub-system including a key generation device and a quantum key distribution device connected with the key generation device, and a cloud-based encryption machine hosting sub-system including an encryption machine carrying a virtual encryption device and a quantum key distribution device connected with the encryption machine. The key injection sub-system and the encryption machine hosting sub-system are connected with each other through their respective quantum key distribution devices. The key generation device may generate a root key component of the virtual encryption device and transmit the root key component to the encryption machine. The encryption machine may receive root key components from one or more key generation devices and synthesize a root key of the virtual encryption device in accordance with the received root key components.
    • 基于云的加密机密钥注入系统包括至少一个密钥注入子系统,包括密钥生成设备和与密钥生成设备连接的量子密钥分发设备,以及基于云的加密机托管子系统,包括加密 携带虚拟加密装置的机器和与加密机连接的量子密钥分发装置。 密钥注入子系统和加密机托管子系统通过其各自的量子密钥分发设备相互连接。 密钥生成设备可以生成虚拟加密设备的根密钥组件,并将密钥组件发送到加密机器。 加密机器可以从一个或多个密钥生成设备接收根密钥组件,并根据接收的根密钥组件合成虚拟加密设备的根密钥。
    • 36. 发明授权
    • Quantum key distribution device, quantum key distribution system, and quantum key distribution method
    • 量子密钥分发装置,量子密钥分发系统和量子密钥分发方法
    • US09350542B2
    • 2016-05-24
    • US14605331
    • 2015-01-26
    • Kabushiki Kaisha Toshiba
    • Ririka TakahashiYoshimichi Tanizawa
    • H04L9/08
    • H04L9/0855H04L9/0852H04L9/0883H04L2209/34
    • According to an embodiment, a quantum key distribution (QKD) device includes a sharing unit, a correcting unit, a deciding unit, a calculator, and a privacy amplifier. The sharing unit is configured to generate a shared bit string through quantum key distribution with each other QKD device connected via quantum communication channels. The correcting unit is configured to generate a corrected bit string through an error correction process on the shared bit string. The deciding unit is configured to calculate an error rate in the corresponding quantum communication channel with respect to each other QKD device, and decide on a combined error rate from error rates calculated. The calculator is configured to calculate, based on the combined error rate, a length of an encryption key to be shared. The privacy amplifier is configured to generate the encryption key having the calculated length of the encryption key from the corrected bit string.
    • 根据实施例,量子密钥分发(QKD)设备包括共享单元,校正单元,决定单元,计算器和隐私放大器。 共享单元被配置为通过量子密钥分配生成共享位串,并且通过量子通信信道连接彼此的QKD设备。 校正单元被配置为通过对共享位串进行纠错处理生成校正的位串。 决定单元被配置为相对于每个其他QKD设备计算相应量子通信信道中的错误率,并且根据计算的错误率来确定组合错误率。 计算器被配置为基于组合的错误率计算要共享的加密密钥的长度。 隐私放大器被配置为从校正的位串生成具有所计算的加密密钥长度的加密密钥。
    • 38. 发明授权
    • Interferometer and method for controlling the coalescence of a pair of photons
    • 用于控制一对光子聚结的干涉仪和方法
    • US09279656B2
    • 2016-03-08
    • US13543299
    • 2012-07-06
    • Fabio Antonio Bovino
    • Fabio Antonio Bovino
    • G01B9/02H04L9/08
    • G01B9/02001G01B9/02014G01B2290/55H04L9/0852
    • An interferometer for controlling the coalescence of a pair of photons, including: an optical source, which generates a first and a second pump pulse coherent with each other and shifted in time by a delay; and a first interferometric stage, which receives the first pump pulse and generates an antisymmetric state with two coalescent photons (1/√{square root over (2)}(|21,02−|01,22)). The interferometer also includes a second interferometric stage, which receives the second pump pulse and generates a symmetric state with two coalescent photons (1/√{square root over (2)}·(|21,02+|01,22)), the first and the second interferometric stages being connected in a manner such that the interferometer outputs a final state equal to a weighted sum of the antisymmetric state and of the symmetric state (1/√{square root over (2)}·(|21,02+|01,22)+eiτ·1/√{square root over (2)}·(|21,02−|01,22)), the weights of the sum being a function of the delay.
    • 一种用于控制一对光子的聚结的干涉仪,包括:光源,其产生彼此相干并在时间上延迟的第一和第二泵浦脉冲; 以及第一干涉级,其接收第一泵浦脉冲并且产生具有两个聚结光子(1 /√{(2)}(| 21,02- | 01,22)的平方根)的反对称状态)。 干涉仪还包括第二干涉级,其接收第二泵浦脉冲并且产生具有两个聚结光子的对称状态(1 /√{(2)}·(| 21,02+ | 01,22)的平方根) 第一和第二干涉级以这样的方式连接,使得干涉仪输出等于反对称状态和对称状态的加权和的最终状态(1 /√{(2)}·(| 21 ,02 + | 01,22)+eiτ·1 /√{平方根超过(2)}·(| 21,02- | 01,22)),该和的权重是延迟的函数。
    • 40. 发明申请
    • SECURE MULTI-PARTY COMMUNICATION WITH QUANTUM KEY DISTRIBUTION MANAGED BY TRUSTED AUTHORITY
    • 由信用管理机构管理的量子密钥分发的安全多方通信
    • US20160013936A1
    • 2016-01-14
    • US14589261
    • 2015-01-05
    • Los Alamos National Security, LLC
    • Richard John HUGHESJane Elizabeth NORDHOLTCharles Glen PETERSON
    • H04L9/08H04W12/04H04L29/06
    • H04L9/0852H04L9/083H04L9/3226H04L9/3236H04L63/062H04L2209/38H04W12/04H04W88/08
    • Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution (“QKD”) are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.
    • 本文描述了在量子密钥分发(“QKD”)之后实现安全多方通信协议的技术和工具。 在示例实现中,可信授权有助于多个用户设备之间的安全通信。 受信任的机构在与不同用户的信任关系下,通过QKD分配不同的量子密钥。 受信任的机构使用量子密钥确定组合密钥,并使组合密钥可用于分发(例如,用于通过公共信道的非秘密分发)。 即使在两个用户设备之间没有QKD的情况下,组合键也促进两个用户设备之间的安全通信。 通过协议,QKD的优点将扩展到多方通信场景。 此外,即使信任的权威机构处于脱机状态,或者大型组织寻求在组内建立安全通信,协议也可以保留QKD的优点。