会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 34. 发明授权
    • Carbonitriding method, machinery component fabrication method, and machinery component
    • 碳氮共渗法,机械部件制造方法和机械部件
    • US09062355B2
    • 2015-06-23
    • US12296054
    • 2007-04-03
    • Chikara Ohki
    • Chikara Ohki
    • C23C8/32C21D9/40C21D1/06C21D1/76C21D9/32C21D9/36C23C8/30C21D1/74C21D11/00
    • C21D9/40C21D1/06C21D1/74C21D1/76C21D9/32C21D9/36C21D11/00C23C8/30C23C8/32F16C33/64
    • A carbonitriding method that can improve the nitrogen permeating rate to render the carbonitriding process effective includes an atmosphere control step, and a heating pattern control step. The atmosphere control step includes an undecomposed NH3 partial pressure control step, and a CO/CO2 partial pressure control step. The undecomposed NH3 partial pressure control step and the CO/CO2 partial pressure control step are carried out in the atmosphere control step such that ac* defined by the following equation (1) is at least 0.88 and not more than 1.27, and α defined by equation (2) is at least 0.012 and not more than 0.020, where PN is the undecomposed ammonia partial pressure and PH is the hydrogen partial pressure in the heat treatment furnace, wherein a c * = ( Pco ) 2 ⁢ K × Pco 2 ( 1 ) PCO: partial pressure of carbon monoxide (atm), PCO2: partial pressure of carbon dioxide (atm) K: equilibrium constant at +CO2 2CO α = P N 0.006 × ( P H ) 3 2 × ( 1.877 - 1.055 × a c * ) 100 . ( 2 )
    • 可以提高氮渗透速度使碳氮共渗工艺有效的碳氮共渗方法包括气氛控制步骤和加热模式控制步骤。 气氛控制步骤包括未分解的NH 3分压控制步骤和CO / CO 2分压控制步骤。 未分解的NH 3分压控制步骤和CO / CO 2分压控制步骤在气氛控制步骤中进行,使得由下式(1)定义的ac *为至少0.88且不大于1.27,α由 式(2)为0.012且不大于0.020,其中PN为未分解的氨分压,PH为热处理炉中的氢分压,其中ac * =(Pco)2 K×Pco 2(1 )PCO:一氧化碳分压(atm),PCO2:二氧化碳分压(atm)K:CO 2 + CO 2的平衡常数2COα= PN 0.006×(PH)3 2×(1.877-1.055×ac *)100。 (2)
    • 36. 发明授权
    • Method for manufacturing a hot press-formed member
    • 热压成形构件的制造方法
    • US08741075B2
    • 2014-06-03
    • US13533102
    • 2012-06-26
    • Kazuhito ImaiMasanobu Ichikawa
    • Kazuhito ImaiMasanobu Ichikawa
    • B21C23/24B21C23/22
    • C23C2/28C21D1/673C21D1/74C23C2/06C23C2/26C25D5/50
    • A method of producing a hot press-formed member having good corrosion resistance comprises subjecting a zinc-based plated steel sheet to heat treatment by heating to a temperature region of 600-750° C. at a rate of temperature increase up to 600° C. of at most 50° C. per second followed by cooling to 550° C. or below to form a steel blank which has a zinc oxide layer in its uppermost surface portion and below it a zinc-iron alloy phase having an Fe content of at least 25 mass %. This steel blank is heated to a temperature of at least its Ac3 point, then press formed immediately at a temperature of at least its Ac3 point, and then rapidly cooled. The hot press-formed member has a surface region with zinc oxide and iron-zinc solid solution phases and not containing an intermetallic compound phase or a pure zinc phase.
    • 一种制造具有良好耐腐蚀性的热压成型件的方法包括:将锌基镀覆钢板以600-750℃的温度区域进行加热处理,温度升高至600℃ 至多50℃/秒,然后冷却至550℃或更低,以形成在其最上表面部分和其下方具有氧化锌层的钢坯,其中Fe含量为 至少25质量%。 将该钢坯加热到至少其Ac3点的温度,然后在至少其Ac3点的温度下立即压制,然后快速冷却。 热压成型体具有氧化锌和铁 - 锌固溶相的表面区域,不含金属间化合物相或纯锌相。
    • 39. 发明申请
    • MAGNETIC REFRIGERATION MATERIAL
    • 磁性制冷材料
    • US20140007593A1
    • 2014-01-09
    • US14005081
    • 2012-03-14
    • Hiroaki TakataToshio Irie
    • Hiroaki TakataToshio Irie
    • H01F1/01F25B21/00
    • H01F1/015C21D1/74C22C1/02C22C33/0278C22C38/002C22C38/005C22C38/02C22C38/06C22C38/10C22C38/14C22C38/18C22C2202/02F25B21/00F25B2321/002
    • Provided is a magnetic refrigeration material which has a Curie temperature near room temperature or higher, and provides refrigeration performance well over that of conventional materials when subjected to a field change up to 2 Tesla, which is assumed to be achievable with a permanent magnet. The magnetic refrigeration material is of a composition represented by the formula La1-fREf(Fe1-a-b-c-d-eSiaCObXcYdZe)13 (RE: at least one of rare earth elements including Sc and Y and excluding La; X: Ga and/or Al; Y: at least one of Ge, Sn, B, and C; Z: at least one of Ti, V, Cr, Mn, Ni, Cu, Zn, and Zr; 0.03≦a≦0.17, 0.003≦b≦0.06, 0.02≦c≦0.10, 0≦d≦0.04, 0≦e≦0.04, 0≦f≦0.50), and has Tc of not lower than 220 K and not higher than 276 K, and the maximum (−ΔSmax) of magnetic entropy change (−ΔSM) of the material when subjected to a field change up to 2 Tesla is not less than 5 J/kgK.
    • 本发明提供一种磁性制冷材料,其具有接近室温或更高的居里温度,并且当经过场效应达到2特斯拉时,其制冷性能优于常规材料,这被认为可以用永磁体实现。 磁致冷材料为式La1-fREf(Fe1-abcd-eSiaCObXcYdZe)13(RE:包括Sc和Y,除La之外的至少一种稀土元素,X:Ga和/或Al; Y :Ge,Sn,B和C中的至少一种; Z:Ti,V,Cr,Mn,Ni,Cu,Zn和Zr中的至少一种;0.03≤a≤0.17,0.003b@ 0.06,0.02 并且具有不低于220K且不高于276K的Tc,并且磁熵的最大值(-DeltaSmax) 当进行场特性变化达2特斯拉时材料的变化(-DeltaSM)不小于5J / kgK。