会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 33. 发明申请
    • Method and Apparatus of a Fully-Pipelined Layered LDPC Decoder
    • 全流水线分层LDPC解码器的方法和装置
    • US20160173131A1
    • 2016-06-16
    • US15011252
    • 2016-01-29
    • Tensorcom, Inc.
    • Bo XiaRicky Lap Kei CheungBo Lu
    • H03M13/11
    • H03M13/1145H03M13/1122H03M13/114H03M13/1148H03M13/116
    • Processors are arranged in a pipeline structure to operate on multiple layers of data, each layer comprising multiple groups of data. An input to a memory is coupled to an output of the last processor in the pipeline, and the memory's output is coupled to an input of the first processor in the pipeline. Multiplexing and de-multiplexing operations are performed in the pipeline. For each group in each layer, a stored result read from the memory is applied to the first processor in the pipeline structure. A calculated result of the stored result is output at the last processor and stored in the memory. Once processing for the last group of data in a first layer is completed, the corresponding processor is configured to process data in a next layer before the pipeline finishes processing the first layer. The stored result obtained from the next layer comprises a calculated result produced from a layer previous to the first layer.
    • 处理器被布置在流水线结构中以在多层数据上操作,每层包括多组数据。 存储器的输入耦合到流水线中的最后一个处理器的输出,并且存储器的输出耦合到流水线中的第一处理器的输入。 在流水线中执行多路复用和解复用操作。 对于每个层中的每个组,将从存储器读取的存储结果应用于流水线结构中的第一处理器。 存储结果的计算结果在最后一个处理器处输出并存储在存储器中。 一旦对第一层中的最后一组数据的处理完成,相应的处理器被配置为在管线完成对第一层的处理之前处理下一层中的数据。 从下一层获得的存储结果包括从第一层之前的层产生的计算结果。
    • 34. 发明授权
    • Direct coupled biasing circuit for high frequency applications
    • 用于高频应用的直接耦合偏置电路
    • US09143204B2
    • 2015-09-22
    • US13163562
    • 2011-06-17
    • KhongMeng ThamZaw Soe
    • KhongMeng ThamZaw Soe
    • H03G3/10H04B5/00G05F3/16
    • H03K3/012G05F3/16H01Q1/50H03K17/56H04B5/0075
    • This invention eliminates the need for “capacitor coupling” or “transformer coupling,” and the associated undesirable parasitic capacitance and inductance associated with these coupling techniques when designing high frequency (˜60 GHz) circuits. At this frequency, the distance between two adjacent stages needs to be minimized. A resonant circuit in series with the power or ground leads is used to isolate a biasing signal from a high frequency signal. The introduction of this resonant circuit allows a first stage to be “directly coupled” to a next stage using a metallic trace. The “direct coupling” technique passes both the high frequency signal and the biasing voltage to the next stage. The “direct coupling” approach overcomes the large die area usage when compared to either the “AC coupling” or “transformer coupling” approach since neither capacitors nor transformers are required to transfer the high frequency signals between stages.
    • 当设计高频(〜60GHz)电路时,本发明消除了对“电容器耦合”或“变压器耦合”的需求以及与这些耦合技术相关联的不期望的寄生电容和电感。 在这个频率下,两个相邻阶段之间的距离需要最小化。 与电源或接地引线串联的谐振电路用于将偏置信号与高频信号隔离开来。 该谐振电路的引入允许使用金属迹线将第一级“直接耦合”到下一级。 “直接耦合”技术将高频信号和偏置电压都通过下一级。 与“交流耦合”或“变压器耦合”方法相比,“直接耦合”方法克服了大的管芯面积使用,因为既不需要电容器也不需要变压器来在级之间传输高频信号。
    • 35. 发明申请
    • Frequency Pulling Reduction in Wide-Band Direct Conversion Transmitters
    • 宽带直接转换发射机中的降频
    • US20140254710A1
    • 2014-09-11
    • US13789682
    • 2013-03-08
    • TENSORCOM, INC.
    • Zaw Soe
    • H04L25/03
    • H04B1/02H03D7/165
    • In an up-converter path of a transmitter, wide-band signal system like direct. conversion WiGig, a high pass filter (HPF) is placed in the baseband path after the low pass filter (LPF) but before the mixers. The baseband signal of WiGig can have a bandwidth of 800 MHz. The HPF removes the frequencies from 0-40 MHz from the baseband signal and degrades the overall signal of the baseband by a dB or so. However, the frequency pulling is significantly reduced since oscillator frequency and Radio frequency (RF) transmitter frequencies after conversion become further separated when compared a system using to the conventional approach. This causes the injected signal to fall outside the locking range of the oscillator. The concern of substrate coupling is reduced and allows for a reduction in the physical distance between the oscillator and the mixer and reduces a shift in the desired target frequency of operation.
    • 在发射机的上变频器路径中,像直接的宽带信号系统。 转换WiGig,高通滤波器(HPF)放置在低通滤波器(LPF)之后但混频器之前的基带路径中。 WiGig的基带信号可以具有800 MHz的带宽。 HPF从基带信号中删除0-40 MHz的频率,并将基带的整体信号降低dB左右。 然而,与使用传统方法的系统进行比较时,振荡器频率和转换后的射频(RF)发射机频率变得更加分离时,频率牵引显着减少。 这会使注入的信号落在振荡器的锁定范围之外。 衬底耦合的问题被减少并且允许减小振荡器和混频器之间的物理距离,并减少所需目标操作频率的偏移。
    • 36. 发明申请
    • GILBERT MIXER WITH NEGATIVE GM TO INCREASE NMOS MIXER CONVERSION
    • GILBERT混合器与负极GM增加NMOS混合器转换
    • US20140253216A1
    • 2014-09-11
    • US13789681
    • 2013-03-08
    • TENSORCOM, INC.
    • Zaw SoeTham KhongMeng
    • G06G7/16
    • G06G7/16H03D7/1441H03D7/1458H03D7/165H03D2200/0019
    • A cross coupled NMOS transistors providing a negative gm transistor feedback allows a mixer to saturate at a reduced input signal swing voltage when compared to a conventional mixer allowing the mixer to enter into the current mode operation at a reduced signal input voltage range. The linearity of the baseband signal path can be traded against the mixer gain and is improved if the signal swing in the baseband signal path is reduced. The input mixer transistors operate in the saturated mode at a reduced input signal swing voltage causing the power efficiency of the system to increase since the transmit chain operates at a class-D power efficient. Efficiency is very important in mobile applications to save and extend the battery power of a mobile phone providing a better utilization of the available power since most of that power is supplied to the energy of the outgoing modulated signal.
    • 提供负gm晶体管反馈的交叉耦合NMOS晶体管使混频器能够与传统的混频器相比,作为降低的输入信号摆幅电压饱和,从而允许混频器在降低的信号输入电压范围内进入电流模式操作。 基带信号路径的线性度可以抵抗混频器增益进行交易,如果基带信号路径中的信号摆幅减小,则可以得到改善。 输入混频器晶体管以降低的输入信号摆幅电压在饱和模式下工作,导致系统的功率效率增加,因为发射链以D类功率有效工作。 在移动应用中,效率对于节省和扩展移动电话的电池电力是非常重要的,其提供了对可用功率的更好的利用,因为大部分功率被提供给输出调制信号的能量。
    • 37. 发明申请
    • Method and Apparatus for a Class-E Load Tuned Beamforming 60 GHz Transmitter
    • 用于E类负载调谐波束形成60 GHz发射机的方法和装置
    • US20140043101A1
    • 2014-02-13
    • US13572522
    • 2012-08-10
    • Jiashu Chen
    • Jiashu Chen
    • H03F3/16
    • H03F3/217H01L2223/6677H01L2224/16227H01L2924/15311Y02D70/20
    • The class-E amplifier can be tuned to pass only the fundamental frequency to the antenna by optimizing the second harmonics at the drain of the final PA driver transistor. A CPW in series with a capacitor between the PA transistor and the load forms a band pass filter that only allows the fundamental frequency to pass to the load of the antenna. A supply inductor to couple the drain of the final PA driver transistor to the power supply is tuned at the second harmonic with the parasitic capacitance of the drain of the PA transistor. A load capacitance is adjusted at the fundamental frequency to insure that the current waveform and voltage waveforms at the drain of the PA driver transistor do not overlap, thereby minimizing the parasitic power dissipation and allowing maximum energy to be applied to the antenna.
    • 可以通过优化最终PA驱动器晶体管的漏极处的二次谐波,将E类放大器调谐为仅将基频通过天线。 与PA晶体管和负载之间的电容器串联的CPW形成只允许基频通过天线负载的带通滤波器。 将最终PA驱动器晶体管的漏极耦合到电源的电源电感器被调谐在具有PA晶体管的漏极的寄生电容的二次谐波处。 负载电容被调整到基频,以确保PA驱动晶体管的漏极处的电流波形和电压波形不重叠,从而最小化寄生功率耗散,并允许最大的能量施加于天线。
    • 38. 发明申请
    • Method and Apparatus for a 60 GHz Endfire Antenna
    • 一种60 GHz终端天线的方法和装置
    • US20140022135A1
    • 2014-01-23
    • US13552943
    • 2012-07-19
    • HungYu David Yang
    • HungYu David Yang
    • H01Q9/16
    • H01Q9/16H01L2224/16227H01Q9/0485H01Q13/085
    • The LTCC (Low Temperature Co-fired Ceramic) substrate is used to form an antenna structure operating at 60 GHz. The dielectric constant is high and ranges from 5 to 8. The substrate thickness is fabricated with a thickness between 360 μm to 700 μm. The large dielectric constant and large thickness of the substrate creates a guiding wave in the LTCC that forms an endfire antenna. A high gain signal of 10 dB in a preferred direction occurs by placing the microstrip fed dipole structure in the center of the LTCC substrate creating a dielectric cavity resonator. The creation of a slot in the LTCC substrate between the two microstrip fed dipole structures eliminates beam tilting and allows for the two microstrip fed dipole structures to reduce the coupling to each other thereby providing substantially two isolated endfire antennas. These antennas can be used as multiple receive or transmit antennas.
    • LTCC(低温共烧陶瓷)衬底用于形成在60GHz工作的天线结构。 介电常数高,范围为5至8.基板厚度制造厚度在360毫米至700毫米之间。 衬底的大介电常数和大厚度在LTCC中产生形成端射天线的引导波。 通过将微带馈电偶极子结构放置在LTCC衬底的中心,产生电介质腔谐振器,从而发生优选方向上10dB的高增益信号。 在两个微带馈电偶极结构之间的LTCC衬底中创建一个槽消除了波束倾斜,并且允许两个微带馈电偶极结构减少彼此的耦合,从而提供基本上两个隔离的端射天线。 这些天线可以用作多个接收或发射天线。
    • 39. 发明授权
    • Differential source follower having 6dB gain with applications to WiGig baseband filters
    • 具有6dB增益的差分源极跟随器应用于WiGig基带滤波器
    • US08487695B2
    • 2013-07-16
    • US13243880
    • 2011-09-23
    • Zaw Soe
    • Zaw Soe
    • H03F3/45
    • H03H11/1217H03F3/195H03F3/301H03F3/45179H03F3/505H03F2203/45528H03F2203/45544H03F2203/45594H03H3/00
    • A differential amplifier comprising a first upper device and a first lower device series coupled between two power supplies and a second upper device and a second lower device series coupled between the two power supplies. A first DC voltage enables the first upper device and the second upper device and a second DC voltage regulates current flow in the first lower device and the second lower device. An AC signal component is coupled to the first upper device and the second lower device while the AC signal complement is coupled to the first lower device and the second upper device. A first output signal between the first upper device and the first lower device. Separate RC networks couple the AC signals to their respective device. A first and second output signal forms between the upper device and the lower device, respectively. All the devices are same channel type.
    • 一种差分放大器,包括耦合在两个电源之间的第一上部装置和第一下部装置系列,以及耦合在两个电源之间的第二上部装置和第二下部装置。 第一直流电压使得第一上部装置和第二上部装置能够和第二直流电压调节第一下部装置和第二下部装置中的电流。 当AC信号补码耦合到第一下部装置和第二上部装置时,AC信号分量耦合到第一上部装置和第二下部装置。 第一上部装置和第一下部装置之间的第一输出信号。 单独的RC网络将AC信号耦合到其相应的设备。 分别在上部装置和下部装置之间形成第一和第二输出信号。 所有设备的通道类型相同。