会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Antiferromagnetically exchange-coupled structure for magnetic tunnel junction device
    • 用于磁性隧道结装置的反铁磁交换耦合结构
    • US06326637B1
    • 2001-12-04
    • US09420213
    • 1999-10-18
    • Stuart Stephen Papworth ParkinMahesh Govind Samant
    • Stuart Stephen Papworth ParkinMahesh Govind Samant
    • H01L2906
    • H01F10/3268B82Y10/00B82Y25/00G11B5/3903G11B5/3909G11B2005/3996H01L43/08H01L43/10
    • An antiferromagnetically exchange-coupled structure for use in various types of magnetic devices, such as magnetic tunnel junctions and spin-valve giant magnetoresistance recording heads, includes an antiferromagnetic layer formed of an alloy of osmium and manganese, wherein the osmium is present in the range of approximately 10 to 30 atomic %. The antiferromagnetic layer is deposited on a non-reactive underlayer, preferably one formed of a noble metal, such as platinum, palladium or alloys thereof. The antiferromagnetic material provides a strong exchange biasing for the ferromagnetic layer that is deposited on the antiferromagnetic layer. Iridium may be added to the osmium-manganese alloy, wherein the total of osmium and iridium is in the range of the approximately 10 to 30 atomic %, to increase the blocking temperature of the antiferromagnetic material. A template layer of permalloy (nickel-iron alloy) may be formed between the underlayer and the antiferromagnetic layer to improve the growth of the osmium-manganese alloy. The resulting antiferromagnetically exchange-coupled structure exhibits very high thermal stability, i.e., the magnetoresistance of magnetic tunnel junction devices is retained even during relatively high annealing process temperatures. This allows magnetic tunnel junction devices using the structure to be used as memory cells in magnetic random access memory arrays that are formed on substrates with electronic circuitry formed by conventional high-temperature CMOS processes and which require high temperature anneals of the completed memory chips.
    • 用于各种磁性装置(例如磁性隧道结和自旋阀巨磁电阻记录头)的反铁磁交换耦合结构包括由锇和锰合金形成的反铁磁层,其中锇存在于该范围内 约10至30原子%。 反铁磁层沉积在非反应性底层上,优选由贵金属形成的铂,钯或其合金形成。 反铁磁材料为沉积在反铁磁层上的铁磁层提供强的交换偏置。 铱可以添加到锇锰合金中,其中锇和铱的总和在大约10至30原子%的范围内,以增加反铁磁性材料的封闭温度。 可以在底层和反铁磁层之间形成坡莫合金(镍 - 铁合金)的模板层,以改善锇锰合金的生长。 所得到的反铁磁交换耦合结构表现出非常高的热稳定性,即即使在相对高的退火工艺温度下,磁性隧道结装置的磁阻仍然保持。 这允许使用该结构的磁隧道结器件用作磁性随机存取存储器阵列中的存储器单元,其形成在具有由常规高温CMOS工艺形成的电子电路的衬底上,并且需要完成的存储器芯片的高温退火。
    • 32. 发明授权
    • Magnetic tunnel junction magnetoresistive read head with longitudinal
and transverse bias
    • 磁隧道结磁阻读头,具有纵向和横向偏置
    • US06005753A
    • 1999-12-21
    • US87322
    • 1998-05-29
    • Robert Edward Fontana, Jr.Stuart Stephen Papworth ParkinChing Hwa Tsang
    • Robert Edward Fontana, Jr.Stuart Stephen Papworth ParkinChing Hwa Tsang
    • G01R33/06G11B5/39
    • B82Y25/00B82Y10/00G01R33/06G11B5/3903G11B2005/3996
    • A magnetic tunnel junction magnetoresistive read head has one fixed ferromagnetic layer and one generally rectangularly shaped sensing ferromagnetic layer on opposite sides of the tunnel barrier layer, and a biasing ferromagnetic layer located around the side edges and back edges of the sensing ferromagnetic layer. An electrically insulating layer separates the biasing layer from the edges of the sensing layer. The biasing layer is a continuous boundary biasing layer that has side regions and a back region to surround the three edges of the sensing layer. When the biasing layer is a single layer with contiguous side and back regions its magnetic moment can be selected to make an angle with the long edges of the sensing layer. In this manner the biasing layer provides both a transverse bias field to compensate for transverse ferromagnetic coupling and magnetostatic coupling fields acting on the sensing layer to thus provide for a linear response of the head and a longitudinal bias field to stabilize the head. The biasing layer may also be formed with discrete side regions and a back region. The discrete side regions may have a magnetic moment oriented in a different direction from the moment of the back region in order to provide the correct combination of transverse and longitudinal bias fields.
    • 磁性隧道结磁阻读取头在隧道势垒层的相对侧具有一个固定的铁磁层和一个大致矩形的感测铁磁层,以及位于感测铁磁层的侧边缘和后边缘周围的偏置铁磁层。 电绝缘层将偏置层与感测层的边缘分开。 偏置层是连续的边界偏置层,其具有围绕感测层的三个边缘的侧面区域和后部区域。 当偏置层是具有相邻侧面和后部区域的单层时,其磁矩可以被选择成与感测层的长边缘形成一个角度。 以这种方式,偏置层提供横向偏置场以补偿作用在感测层上的横向铁磁耦合和静磁耦合场,从而提供头部的线性响应和纵向偏置场以稳定头部。 偏压层也可以形成有离散的侧部区域和后部区域。 离散的侧部区域可以具有与从后部区域的力矩不同的方向定向的磁矩,以便提供横向和纵向偏置场的正确组合。
    • 33. 发明授权
    • Magnetic tunnel junction magnetoresistive read head with sensing layer
as flux guide
    • 磁性隧道结磁阻读头,传感层作为助焊剂
    • US5898547A
    • 1999-04-27
    • US957699
    • 1997-10-24
    • Robert Edward Fontana, Jr.Stuart Stephen Papworth ParkinChing Hwa Tsang
    • Robert Edward Fontana, Jr.Stuart Stephen Papworth ParkinChing Hwa Tsang
    • G11B5/39G11B5/40G11B5/33
    • G11B5/3916G11B5/3169G11B5/3903G11B5/3967G11B5/40
    • A magnetic tunnel junction (MTJ) magnetoresistive read head for a magnetic recording system has the MTJ sensing or free ferromagnetic layer also functioning as a flux guide to direct magnetic flux from the magnetic recording medium to the tunnel junction. The MTJ fixed ferromagnetic layer has its front edge recessed from the sensing surface of the head. Both the fixed and free ferromagnetic layers are in contact with opposite surfaces of the MTJ tunnel barrier layer but the free ferromagnetic layer extends beyond the back edge of either the tunnel barrier layer or the fixed ferromagnetic layer, whichever back edge is closer to the sensing surface. This assures that the magnetic flux is non-zero in the tunnel junction region. The magnetization direction of the fixed ferromagnetic layer is fixed in a direction generally perpendicular to the sensing surface and thus to the magnetic recording medium, preferably by interfacial exchange coupling with an antiferromagnetic layer. The magnetization direction of the free ferromagnetic layer is aligned in a direction generally parallel to the surface of the medium in the absence of an applied magnetic field and is free to rotate in the presence of applied magnetic fields from the medium. A layer of high coercivity hard magnetic material adjacent the sides of the free ferromagnetic layer longitudinally biases the magnetization of the free ferromagnetic layer in the preferred direction.
    • 用于磁记录系统的磁隧道结(MTJ)磁阻读取头具有MTJ感测或自由铁磁层,还用作磁通指引,以将磁通量从磁记录介质引导到隧道结。 MTJ固定铁磁层的前缘从头部的感测表面凹陷。 固定和自由铁磁层都与MTJ隧道势垒层的相对表面接触,但自由铁磁层延伸超过隧道势垒层或固定铁磁层的后边缘,无论哪个后边缘更靠近感测表面 。 这确保了隧道结区域中的磁通量不为零。 固定铁磁层的磁化方向固定在大致垂直于感测表面的方向上,并因此固定在磁记录介质上,优选地通过与反铁磁层的界面交换耦合。 在没有施加的磁场的情况下,自由铁磁层的磁化方向在大致平行于介质的表面的方向上排列,并且在存在来自介质的施加的磁场的情况下自由旋转。 邻近自由铁磁层侧面的高矫顽磁性硬磁材料层沿优选方向纵向偏置自由铁磁层的磁化。
    • 34. 发明授权
    • Magnetic tunnel junction device with nonferromagnetic interface layer
for improved magnetic field response
    • 具有非磁性界面层的磁隧道结装置,用于改善磁场响应
    • US5764567A
    • 1998-06-09
    • US758614
    • 1996-11-27
    • Stuart Stephen Papworth Parkin
    • Stuart Stephen Papworth Parkin
    • G01R33/06G01R33/09G11B5/39G11C11/15G11C11/16H01F10/08H01F10/16H01F10/32H01L21/8246H01L27/105H01L43/00H01L43/08
    • B82Y25/00B82Y10/00G01R33/093G01R33/098G11C11/16H01F10/3254H01F10/3268H01L43/08H01F41/325
    • A magnetic tunnel junction device, usable as a memory cell or an external magnetic field sensor, has a tunneling magnetoresistance response, as a function of applied magnetic field, that is substantially symmetric about zero field. The magnetic tunnel junction is made up of two ferromagnetic layers, one of which has its magnetic moment fixed and the other of which has its magnetic moment free to rotate, an insulating tunnel barrier layer between the ferromagnetic layers for permitting tunneling current perpendicularly through the layers, and a nonferromagnetic layer located at the interface between the tunnel barrier layer and one of the ferromagnetic layers. The nonferromagnetic layer increases the spacing between the tunnel barrier layer and the ferromagnetic layer at the interface and thus reduces the magnetic coupling between the fixed and free ferromagnetic layers, which has been determined to be the cause of unsymmetric tunneling magnetoresistance response about zero field. Even though the nonferromagnetic interface layer presents nonspin-polarized electronic states at the tunnel barrier layer interface, it unexpectedly does not cause a suppression of the tunneling magnetoresistance.
    • 可用作存储单元或外部磁场传感器的磁性隧道结器件具有作为施加磁场的函数的隧道磁阻响应,其基本上对称关于零场。 磁性隧道结由两个铁磁层组成,其中一个铁磁体的磁矩固定,另一个磁矩具有其自由旋转的磁矩,铁磁层之间的绝缘隧道势垒层允许隧穿电流垂直穿过层 以及位于隧道势垒层与一个铁磁层之间的界面处的非铁磁层。 非铁磁层增加了界面处的隧道势垒层和铁磁层之间的间隔,从而减小了固定和自由铁磁层之间的磁耦合,这被确定为关于零场的不对称隧道磁阻响应的原因。 尽管非铁磁界面层在隧道势垒层界面处呈现非极化极化的电子状态,但意外地不会导致隧道磁阻的抑制。