会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Inverted pendulum type vehicle
    • 倒立摆式车
    • US08381859B2
    • 2013-02-26
    • US13496487
    • 2009-09-18
    • Kazushi HamayaHironori WaitaHiroshi GomiJoonheon ShinKazushi Akimoto
    • Kazushi HamayaHironori WaitaHiroshi GomiJoonheon ShinKazushi Akimoto
    • B62D61/00
    • B62K1/00B60L11/1805B62J1/005B62J25/00B62K11/007B62K15/008Y02T10/7005
    • An inverted pendulum type vehicle (1) includes a lower frame incorporated with load sensor having an input portion 60 for receiving an external force and an upper frame (3) provided with a saddle 11 for supporting a load of a rider or a cargo and a grip handle (31) for enabling a user not riding the vehicle to support the vehicle (1), the upper frame being connected to the lower frame via the input portion of the load sensor. Therefore, in the vehicle including the lower frame supporting a propelling unit for the vehicle and the upper frame detachably attached to the lower frame, by using a single force sensor, not only the force acting on a load support portion of the upper frame can be detected in an accurate manner, but also the force acting on the load support portion when the user is transporting the vehicle can be detected.
    • 倒立摆式车辆(1)包括具有负载传感器的下框架,该负载传感器具有用于接收外力的输入部分60和设置有用于支撑乘员或货物的负载的鞍座11的上框架(3) 握持手柄(31),用于使得不骑车的用户能够支撑车辆(1),上框架经由负载传感器的输入部分连接到下框架。 因此,通过使用单个力传感器,在包括支撑车辆用推进单元的下框架和可拆卸地安装于下框架的上框架的车辆中,不仅作用在上框架的负载支撑部上的力可以 可以检测出准确的方式,而且可以检测到当用户正在运送车辆时作用在负载支撑部分上的力。
    • 32. 发明授权
    • Inverted pendulum type vehicle
    • 倒立摆式车
    • US08443920B2
    • 2013-05-21
    • US13395705
    • 2009-09-18
    • Hiroshi GomiToru Takenaka
    • Hiroshi GomiToru Takenaka
    • B62D21/00
    • B62J1/005B62J25/00B62K1/00B62K11/007B62K15/00
    • The present invention provides an inverted pendulum type vehicle which can perform a turning movement with ease without requiring any additional device even though the vehicle is configured to travel on a single drive wheel. A substantially vertical principal axis of inertia of the vehicle is tilted rearward with respect to a plumb vertical line. As result, when a rider shift his gravitational center in either lateral direction and tilts the vehicle in the corresponding direction, the main wheel is caused to turn around the principal axis of inertia so that the main wheel is steering in effect, and the vehicle can be turned in a desired direction.
    • 本发明提供了一种倒立摆式车辆,即使车辆构造成在单个驱动轮上行进,该车辆也可以容易地执行转动运动,而不需要任何附加装置。 车辆的基本上垂直的主要惯性轴相对于垂直垂直线向后倾斜。 结果,当乘客在横向方向上移动他的重力中心并使车辆沿相应的方向倾斜时,使主轮绕主要惯性轴转动,使得主轮有效转向,车辆可以 沿所需方向转动。
    • 33. 发明授权
    • Leg-type moving robot and floor reaction force detection device thereof
    • 腿型移动机器人及其地板反作用力检测装置
    • US07409265B2
    • 2008-08-05
    • US10500117
    • 2002-12-19
    • Toru TakenakaHiroshi GomiSatoshi ShigemiTakashi Matsumoto
    • Toru TakenakaHiroshi GomiSatoshi ShigemiTakashi Matsumoto
    • G06F19/00
    • B25J13/085B25J19/0091B62D57/02B62D57/032
    • It is arranged such that displacement sensors (70) are installed at a position in or vicinity of elastic members (382), to generate outputs indicating a displacement of the floor contact end of a foot (22) relative to a second joint (18, 20), and a floor reaction force acting on the foot is calculated based on the outputs of the displacement sensors by using a model describing a relationship between the displacement and stress generated in the elastic members in response to the displacement, thereby enabling to achieve accurate calculation of the floor reaction force and more stable walking of a legged mobile robot (1). Further, a dual sensory system is constituted by combining different types of detectors, thereby enabling to enhance the detection accuracy. Furthermore, since it self-diagnoses whether abnormality or degradation occurs in the displacement sensors etc. and performs temperature compensation without using a temperature sensor, the detection accuracy can be further enhanced.
    • 布置成使得位移传感器(70)安装在弹性构件(382)附近的位置处,以产生指示脚(22)的地板接触端相对于第二接头(18)的位移的输出, 20),并且通过使用描述弹性构件中产生的位移和应力之间的关系的模型,基于位移传感器的输出来计算作用在脚上的地板反作用力,从而能够实现准确 计算地板反作用力和更稳定的步行式移动机器人(1)。 此外,通过组合不同类型的检测器来构成双重感觉系统,从而能够提高检测精度。 此外,由于能够自动诊断位移传感器等是否发生异常或劣化,而是不使用温度传感器进行温度补偿,因此能够进一步提高检测精度。
    • 34. 发明申请
    • Legged mobile robot and control system thereof
    • 有腿的移动机器人及其控制系统
    • US20070193789A1
    • 2007-08-23
    • US10593493
    • 2005-02-18
    • Toru TakenakaHiroshi GomiSusumu MiyazakiKazushi Hamaya
    • Toru TakenakaHiroshi GomiSusumu MiyazakiKazushi Hamaya
    • B62D51/06
    • B25J19/0091
    • The legged mobile robot the foot comprises a foot main body connected to each leg, a toe provided at a fore end of the foot main body to be bendable with respect to the foot main body, and a bending angle holder capable of holding a bending angle of the toe in a bendable range of the toe. In addition, a legged mobile robot control system is configured to hold the bending angle of the toe at a first time point which is a liftoff time of the leg from a floor or earlier thereof, and to release the bending angle at a second time point after the leg has lifted off the floor to restore the toe to a initial position. With this, the bending angle at the time of liftoff can continue to be held after liftoff, whereby the robot can be prevented from becoming unstable owing to the toe contacting the floor immediately after liftoff. In addition, stability during tiptoe standing can be enhanced.
    • 腿式移动机器人脚包括连接到每个腿的脚本体,设置在脚主体的前端以相对于脚本体可弯曲的脚趾以及能够保持弯曲角度的弯曲角保持器 的脚趾在脚趾的可弯曲范围内。 此外,有腿的移动机器人控制系统被配置为在脚踏板的起始时间的第一时间点保持脚趾的弯曲角度,该第一时间点是从地板或更早的腿部起飞时间,并且在第二时间点释放弯曲角度 腿后抬起地板将脚趾恢复到初始位置。 由此,脱扣后的弯曲角度可以继续保持,由此能够防止机器人由于在起飞后立即接触地板而变得不稳定。 此外,可以提高脚尖站立时的稳定性。
    • 35. 发明授权
    • Knee pad for a legged walking robot
    • 用于腿式步行机器人的膝垫
    • US06401846B1
    • 2002-06-11
    • US09630743
    • 2000-08-02
    • Toru TakenakaTakayuki KawaiHiroshi GomiTadaaki HasegawaTakashi Matsumoto
    • Toru TakenakaTakayuki KawaiHiroshi GomiTadaaki HasegawaTakashi Matsumoto
    • B62D5702
    • B62D57/032B25J19/0091
    • In a biped walking robot having a body and two articulated legs each connected to the body through a hip joint and having a knee joint and an ankle joint, connected by a shank link, a knee pad is mounted on the shank link as a landing/shock absorbing means at a position adjacent to the knee joint which is brought into contact with the floor when coming into knee-first contact with the floor such that the knee joint is to be positioned at a location forward of the center of gravity of the robot in a direction of robot advance, while absorbing impact occurring from the contact with the floor. With this, the robot can be easily stood up from an attitude with its knee joint regions in contact with the floor. Moreover, when coming into knee-first contact with the floor, it can absorb the impact of the contact to protect the knee joint regions and the floor from damage.
    • 在具有主体和两个铰接腿的双足步行机器人中,每个腿部通过髋关节连接到身体,并且具有通过柄连杆连接的膝关节和踝关节,膝关节垫作为着陆/ 冲击吸收装置位于与膝关节相邻的位置处,当与地板进行膝盖 - 第一次接触时,其与地板接触,使得膝关节位于机器人重心的前方位置 在机器人前进的方向上,同时吸收与地板接触发生的冲击。 这样,机器人可以容易地从与膝盖接合区域与地板接触的姿态站起来。 此外,当与地板进行膝盖首次接触时,它可以吸收接触的冲击,以保护膝关节区域和地板免受损坏。
    • 37. 发明申请
    • LEGGED MOBILE ROBOT AND CONTROL SYSTEM THEREOF
    • 移动机器人及其控制系统
    • US20090210091A1
    • 2009-08-20
    • US12397773
    • 2009-03-04
    • Toru TakenakaHiroshi GomiSusumu MiyazakiKazushi Hamaya
    • Toru TakenakaHiroshi GomiSusumu MiyazakiKazushi Hamaya
    • G06F19/00
    • B25J19/0091
    • The legged mobile robot the foot comprises a foot main body connected to each leg, a toe provided at a fore end of the foot main body to be bendable with respect to the foot main body, and a bending angle holder capable of holding a bending angle of the toe in a bendable range of the toe. In addition, a legged mobile robot control system is configured to hold the bending angle of the toe at a first time point which is a liftoff time of the leg from a floor or earlier thereof, and to release the bending angle at a second time point after the leg has lifted off the floor to restore the toe to a initial position. With this, the bending angle at the time of liftoff can continue to be held after liftoff, whereby the robot can be prevented from becoming unstable owing to the toe contacting the floor immediately after liftoff. In addition, stability during tiptoe standing can be enhanced.
    • 腿式移动机器人脚包括连接到每个腿的脚本体,设置在脚主体的前端以相对于脚本体可弯曲的脚趾以及能够保持弯曲角度的弯曲角保持器 的脚趾在脚趾的可弯曲范围内。 此外,有腿的移动机器人控制系统被配置为在脚踏的起始时间的第一时间点保持脚趾的弯曲角度,该第一时间点是从地板或更早的腿的起飞时间,并且在第二时间点释放弯曲角度 腿后抬起地板将脚趾恢复到初始位置。 由此,脱扣后的弯曲角度可以继续保持,由此能够防止机器人由于在起飞后立即接触地板而变得不稳定。 此外,可以提高脚尖站立时的稳定性。
    • 39. 发明申请
    • Leg-type moving robot and floor reaction force detection device thereof
    • 腿型移动机器人及其地板反作用力检测装置
    • US20050080511A1
    • 2005-04-14
    • US10500117
    • 2002-12-19
    • Toru TakenakaHiroshi GomiSatoshi ShigemiTakashi Matsumoto
    • Toru TakenakaHiroshi GomiSatoshi ShigemiTakashi Matsumoto
    • A63H11/18B25J5/00B25J13/08B25J19/00B62D57/02B62D57/032G06F19/00
    • B25J13/085B25J19/0091B62D57/02B62D57/032
    • It is arranged such that displacement sensors (70) are installed at a position in or vicinity of elastic members (382), to generate outputs indicating a displacement of the floor contact end of a foot (22) relative to a second joint (18, 20), and a floor reaction force acting on the foot is calculated based on the outputs of the displacement sensors by using a model describing a relationship between the displacement and stress generated in the elastic members in response to the displacement, thereby enabling to achieve accurate calculation of the floor reaction force and more stable walking of a legged mobile robot (1). Further, a dual sensory system is constituted by combining different types of detectors, thereby enabling to enhance the detection accuracy. Furthermore, since it self-diagnoses whether abnormality or degradation occurs in the displacement sensors etc. and performs temperature compensation without using a temperature sensor, the detection accuracy can be further enhanced.
    • 布置成使得位移传感器(70)安装在弹性构件(382)附近的位置处,以产生指示脚(22)的地板接触端相对于第二接头(18)的位移的输出, 20),并且通过使用描述弹性构件中产生的位移和应力之间的关系的模型,基于位移传感器的输出来计算作用在脚上的地板反作用力,从而能够实现准确 计算地板反作用力和更稳定的步行式移动机器人(1)。 此外,通过组合不同类型的检测器来构成双重感觉系统,从而能够提高检测精度。 此外,由于能够自动诊断位移传感器等是否发生异常或劣化,而是不使用温度传感器进行温度补偿,因此能够进一步提高检测精度。
    • 40. 发明授权
    • Legged mobile robot and a system for controlling the same
    • 有腿的移动机器人和一个控制它的系统
    • US5455497A
    • 1995-10-03
    • US49494
    • 1993-04-19
    • Masato HiroseHiroshi GomiHideaki TakahashiToru TakenakaMasao NishikawaTadanobu Takahashi
    • Masato HiroseHiroshi GomiHideaki TakahashiToru TakenakaMasao NishikawaTadanobu Takahashi
    • B62D57/032B25J11/00G05B19/00
    • B62D57/032
    • A legged mobile robot having a body and two legs each connected to the body. The robot is quipped with a mechanism for absorbing and moderating impacts produced by external forces during footfall or the like. The mechanism includes an elastic member interposed between the body and legs, or interposed between the leg links, or interposed between the distal end of the legs and foot portions. The robot further has a foot structure for enhancing the ground gripping force and absorbs the impacts. For enhancing the gripping force, the foot sole is provided, for example, with a first elastic member and second elastic member sandwiching a plate spring therebetween. The first elastic member absorbs the impacts, while the second elastic member enhancing the gripping force. The plate spring restrict the deformation of the elastic members in the direction vertical to the foot sole. The invention further includes a locomotion control system using one shock absorbing mechanism.
    • 具有身体和腿部的腿式移动机器人各自连接到身体。 机器人用于吸收和调节在脚步等期间由外力产生的冲击的机构。 该机构包括插入在主体和腿部之间或插入在腿部连杆之间或插入在腿部和脚部的远端之间的弹性构件。 机器人还具有用于增强地面夹持力并吸收冲击的脚结构。 为了增强夹持力,鞋底例如由第一弹性构件和夹在其间的板簧的第二弹性构件设置。 第一弹性构件吸收冲击,而第二弹性构件增强夹紧力。 板簧限制弹性构件在与鞋底垂直的方向上的变形。 本发明还包括使用一个减震机构的运动控制系统。