会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 33. 发明申请
    • System and method for generating perspectives of a SAN topology
    • 用于生成SAN拓扑视角的系统和方法
    • US20050071482A1
    • 2005-03-31
    • US10676698
    • 2003-09-30
    • Sandeep GopisettySumant PadbidriPrasenjit SarkarChung-Hao TanKaladhar Voruganti
    • Sandeep GopisettySumant PadbidriPrasenjit SarkarChung-Hao TanKaladhar Voruganti
    • H04L12/24G06F15/16G06F15/173
    • H04L41/12H04L41/22
    • A SAN management system including the ability to generate perspectives of a SAN topology is provided. The SAN management system includes a SAN manager program to monitor a SAN. The SAN management system further includes a SAN management database linked with the SAN manager program, wherein the SAN management database maintains information identifying devices included within the SAN and connections between the devices. In addition, the SAN management system includes a plurality of sensor agents positioned within the devices included within the SAN, wherein the sensor agents gather information pertaining to the connections between the devices and provide the gathered information to the SAN manager program for inclusion within the SAN management database. Moreover, the SAN management system includes a topology viewer linked to the SAN manager to generate a user requested topology perspective according to data included within the SAN management database and data associated with a previously requested topology perspective.
    • 提供了包括生成SAN拓扑视角的SAN管理系统。 SAN管理系统包括一个监视SAN的SAN管理程序。 SAN管理系统还包括与SAN管理程序连接的SAN管理数据库,其中SAN管理数据库维护标识SAN内包含的设备的信息和设备之间的连接。 另外,SAN管理系统包括位于包含在SAN内的设备内的多个传感器代理,其中传感器代理收集与设备之间的连接有关的信息,并将收集的信息提供给SAN管理程序以包含在SAN内 管理数据库。 此外,SAN管理系统还包括一个与SAN管理器相关联的拓扑查看器,以根据SAN管理数据库中包含的数据和与之前请求的拓扑透视相关联的数据生成用户请求的拓扑视角。
    • 34. 发明授权
    • Calibrating cloud computing environments
    • 校准云计算环境
    • US09323561B2
    • 2016-04-26
    • US12855780
    • 2010-08-13
    • Richard AyalaKavita ChavdaSandeep GopisettySeshashayee S. MurthyAameek Singh
    • Richard AyalaKavita ChavdaSandeep GopisettySeshashayee S. MurthyAameek Singh
    • G06F9/455G06F9/50G06F11/34H04L12/24
    • G06F9/45558G06F9/5072G06F11/3409G06F11/3433G06F11/3442G06F2009/4557G06F2209/501H04L41/14H04L41/145
    • In general, embodiments of present invention provide an approach for calibrating a cloud computing environment. Specifically, embodiments of the present invention provide an empirical approach for obtaining end-to-end performance characteristics for workloads in the cloud computing environment (hereinafter the “environment”). In a typical embodiment, different combinations of cloud server(s) and cloud storage unit(s) are determined. Then, a virtual machine is deployed to one or more of the servers within the cloud computing environment. The virtual machine is used to generate a desired workload on a set of servers within the environment. Thereafter, performance measurements for each of the different combinations under the desired workload will be taken. Among other things, the performance measurements indicate a connection quality between the set of servers and the set of storage units, and are used in calibrating the cloud computing environment to determine future workload placement. Along these lines, the performance measurements can be populated into a table or the like, and a dynamic map of a data center having the set of storage units can be generated.
    • 通常,本发明的实施例提供了一种用于校准云计算环境的方法。 具体地,本发明的实施例提供了一种用于获得云计算环境(以下称为“环境”)中的工作负载的端到端性能特征的经验性方法。 在典型的实施例中,确定云服务器和云存储单元的不同组合。 然后,将虚拟机部署到云计算环境中的一个或多个服务器。 虚拟机用于在环境中的一组服务器上生成所需的工作负载。 此后,将采取在所需工作负荷下的每个不同组合的性能测量。 其中,性能测量表明服务器组和存储单元组之间的连接质量,并用于校准云计算环境以确定未来的工作负载布局。 沿着这些行,性能测量可以被填充到表等中,并且可以生成具有该组存储单元的数据中心的动态映射。
    • 36. 发明授权
    • Allocation of storage resources in a networked computing environment based on energy utilization
    • 基于能源利用的网络计算环境中的存储资源分配
    • US08407501B2
    • 2013-03-26
    • US13073081
    • 2011-03-28
    • Sandip AgarwalaEric K. ButlerSandeep GopisettyKavita Chavda
    • Sandip AgarwalaEric K. ButlerSandeep GopisettyKavita Chavda
    • G06F1/26
    • H04L47/70G06F3/0625G06F3/0635G06F3/067Y02D10/154
    • Embodiments of the present invention provide an approach to provision storage resources (e.g., across an enterprise storage system (ESS) such as a general parallel file system (GPFS) or the like) for different workloads in an energy efficient manner. The system evaluates different energy profiles/workloads' energy consumption characteristics of storage devices to determine an allocation plan that reduces the energy cost (e.g., results in the lowest cost/energy consumption for handling a storage workload). In a typical embodiment, energy consumption characteristics for handling a particular storage workload will be determined. Thereafter, a type of storage device capable of handling the workload will be determined. Then, an allocation plan that results in the most efficient energy consumption for handling the workload will be developed. In general, the allocation plan is based upon the energy consumption characteristics and an energy efficiency algorithm. The energy efficiency algorithm serves to identify storage device(s) that can handle the workload in such a way as to reduce total energy consumption and, accordingly, costs. Along these lines, the energy efficiency algorithm may also consider other factors such as capacity and load of storage devices and service level agreement (SLA) terms in addition to energy costs (e.g., over times of day and/or days of week). In any event, at least one storage device can then be selected for handling the storage workload according to the allocation plan.
    • 本发明的实施例提供了一种以能量效率方式为不同工作负载提供存储资源(例如,跨企业存储系统(ESS),诸如通用并行文件系统(GPFS)等)的方法。 该系统评估存储设备的不同能量简档/工作负载的能量消耗特征,以确定降低能量成本的分配计划(例如,导致用于处理存储工作负载的最低成本/能量消耗)。 在典型的实施例中,将确定用于处理特定存储工作负载的能量消耗特性。 此后,可以确定能够处理工作量的一种存储装置。 然后,将开发出一种能够最有效地处理工作负载能耗的分配计划。 一般来说,分配方案是基于能量消耗特性和能量效率算法。 能源效率算法用于识别能够处理工作负载的存储设备,以减少总能量消耗,并因此降低成本。 除此之外,能源效率算法还可以考虑其他因素,例如存储设备的容量和负载以及服务水平协议(SLA)术语以及能量成本(例如,超过一天和/或几周的时间)。 在任何情况下,可以根据分配计划选择至少一个存储设备来处理存储工作负载。
    • 38. 发明授权
    • Online management of historical data for efficient reporting and analytics
    • 在线管理历史数据,以实现有效的报告和分析
    • US08306953B2
    • 2012-11-06
    • US12872964
    • 2010-08-31
    • Sandip AgarwalaSandeep GopisettyStefan Jaquet
    • Sandip AgarwalaSandeep GopisettyStefan Jaquet
    • G06F7/00G06F17/30
    • G06F17/30536G06F17/30516
    • Embodiments for efficiently computing complex statistics from historical time series data are provided. A hierarchical summarization method includes receiving at least one stream of data and creating data blocks from the at least one stream of data. In another embodiment, a method for computing statistics for historical data includes accessing at least one online stream of historical data, the online stream of historical data including metadata, and creating data blocks from the at least one online stream of historical data. Each data block includes a pair of timestamps indicating a sampling start time and a sampling end time, a number of data samples spanned by the data block, a SUM(X) statistic, a SUM(XX) statistic, and a SUM(XY) statistic computed for the data samples spanned by the data block. Other methods are also presented, such as methods for efficiently and accurately calculating statistical queries regarding historical data for arbitrary time ranges, among others.
    • 提供了从历史时间序列数据有效地计算复杂统计数据的实施例。 层次聚合方法包括从所述至少一个数据流接收至少一个数据流并创建数据块。 在另一个实施例中,用于计算历史数据的统计的方法包括访问历史数据的至少一个在线流,历史数据的在线流,包括元数据,以及从历史数据的至少一个在线流创建数据块。 每个数据块包括指示采样开始时间和采样结束时间的一对时间戳,由数据块跨越的数据样本的数量,SUM(X)统计量,SUM(XX)统计量和SUM(XY) 对由数据块跨越的数据样本计算的统计量。 还提出了其他方法,例如用于有效和准确地计算关于任意时间范围的历史数据的统计查询的方法等。
    • 39. 发明申请
    • ALLOCATION OF STORAGE RESOURCES IN A NETWORKED COMPUTING ENVIRONMENT BASED ON ENERGY UTILIZATION
    • 基于能源利用的网络计算环境中的存储资源分配
    • US20120254640A1
    • 2012-10-04
    • US13073081
    • 2011-03-28
    • Sandip AgarwalaEric K. ButlerSandeep GopisettyKavita Chavda
    • Sandip AgarwalaEric K. ButlerSandeep GopisettyKavita Chavda
    • G06F12/02G06F1/32
    • H04L47/70G06F3/0625G06F3/0635G06F3/067Y02D10/154
    • Embodiments of the present invention provide an approach to provision storage resources (e.g., across an enterprise storage system (ESS) such as a general parallel file system (GPFS) or the like) for different workloads in an energy efficient manner. The system evaluates different energy profiles/workloads' energy consumption characteristics of storage devices to determine an allocation plan that reduces the energy cost (e.g., results in the lowest cost/energy consumption for handling a storage workload). In a typical embodiment, energy consumption characteristics for handling a particular storage workload will be determined. Thereafter, a type of storage device capable of handling the workload will be determined. Then, an allocation plan that results in the most efficient energy consumption for handling the workload will be developed. In general, the allocation plan is based upon the energy consumption characteristics and an energy efficiency algorithm. The energy efficiency algorithm serves to identify storage device(s) that can handle the workload in such a way as to reduce total energy consumption and, accordingly, costs. Along these lines, the energy efficiency algorithm may also consider other factors such as capacity and load of storage devices and service level agreement (SLA) terms in addition to energy costs (e.g., over times of day and/or days of week). In any event, at least one storage device can then be selected for handling the storage workload according to the allocation plan.
    • 本发明的实施例提供了一种以能量效率方式为不同工作负载提供存储资源(例如,跨企业存储系统(ESS),诸如通用并行文件系统(GPFS)等)的方法。 该系统评估存储设备的不同能量简档/工作负载的能量消耗特征,以确定降低能量成本的分配计划(例如,导致用于处理存储工作负载的最低成本/能量消耗)。 在典型的实施例中,将确定用于处理特定存储工作负载的能量消耗特性。 此后,可以确定能够处理工作量的一种存储装置。 然后,将开发出一种能够最有效地处理工作负载能耗的分配计划。 一般来说,分配方案是基于能量消耗特性和能量效率算法。 能源效率算法用于识别能够处理工作负载的存储设备,以减少总能量消耗,并因此降低成本。 除此之外,能源效率算法还可以考虑其他因素,例如存储设备的容量和负载以及服务水平协议(SLA)术语以及能量成本(例如,超过一天和/或几周的时间)。 在任何情况下,可以根据分配计划选择至少一个存储设备来处理存储工作负载。