会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 32. 发明申请
    • IMAGE RETRIEVAL USING DISCRIMINATIVE VISUAL FEATURES
    • 使用分辨率视觉特征的图像检索
    • US20120177294A1
    • 2012-07-12
    • US12987167
    • 2011-01-10
    • Qifa KeJia DengSimon BakerMichael Isard
    • Qifa KeJia DengSimon BakerMichael Isard
    • G06K9/48G06K9/52G06K9/46
    • G06F17/30256G06F17/30277
    • Image search results are obtained by providing weights to visual features to emphasize features corresponding to objects of interest while simultaneously deemphasizing irrelevant or inconsistent features that lead to poor search results. In order to minimize the impact of visual features that are unreliable or irrelevant with respect to the objects of interest in the image, context-dependent weights are provided to detect visual features such that those visual features pertaining to the objects of interest are more heavily weighted than those visual features that pertain to irrelevant or unreliable portions of the image. Visual features may be weighted for images in a searchable database. Training data may be obtained and used in weighting visual features in a query image and, alternatively, in searchable database images.
    • 通过为视觉特征提供权重来获得图像搜索结果,以强调与感兴趣对象相对应的特征,同时强调导致不良搜索结果的不相关或不一致的特征。 为了最小化相对于图像中感兴趣的对象不可靠或不相关的视觉特征的影响,提供上下文相关权重以检测视觉特征,使得与感兴趣对象相关的那些视觉特征被更加重地加权 比那些与图像无关或不可靠部分有关的视觉特征。 视觉特征可以对可搜索数据库中的图像进行加权。 训练数据可以获得并用于加权查询图像中的视觉特征,或者在可搜索的数据库图像中。
    • 34. 发明申请
    • Searching for information utilizing a probabilistic detector
    • 使用概率检测器搜索信息
    • US20070078827A1
    • 2007-04-05
    • US11243924
    • 2005-10-05
    • Gaurav SareenMark ManasseMartin AbadiMichael Isard
    • Gaurav SareenMark ManasseMartin AbadiMichael Isard
    • G06F17/30
    • G06F17/30687
    • A probabilistic detector is utilized to query a database. Utilization of a probabilistic detector provides assurance with 100 per cent probability that a search expression in the query is not in the database index. The probabilistic detector is implemented in the form of a Bloom filter. The probabilistic detector is created by hashing expressions in the database index and mapping the resulting hash values into the probabilistic detector. Upon receiving a query, expressions of the query are hashed. The probabilistic detector is queried using these hash values. If the results of querying the probabilistic detector indicate that searched for information may be in the database, the database is not queried. If the results of querying the probabilistic detector indicate that the information may be in the database, the database is queried for the information using the original query. This technique is advantageous in mitigating detrimental effects of denial of service attacks.
    • 利用概率检测器查询数据库。 概率检测器的利用率提供了100%的可能性,即查询中的搜索表达式不在数据库索引中。 概率检测器以Bloom滤波器的形式实现。 概率检测器由数据库索引中的散列表达式创建,并将生成的散列值映射到概率检测器中。 在接收到查询后,查询的表达式将被哈希。 使用这些散列值查询概率检测器。 如果查询概率检测器的结果表明搜索到的信息可能在数据库中,则不查询数据库。 如果查询概率检测器的结果表明信息可能在数据库中,则使用原始查询查询数据库中的信息。 这种技术有利于减轻拒绝服务攻击的有害影响。