会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 32. 发明授权
    • Method and system for the computerized assessment of breast cancer risk
    • 乳腺癌风险计算机化评估方法与系统
    • US06282305B1
    • 2001-08-28
    • US09092004
    • 1998-06-05
    • Zhimin HuoMaryellen L. Giger
    • Zhimin HuoMaryellen L. Giger
    • G06K900
    • G06T7/0012G06K9/6277
    • A method, system and computer readable medium for the computerized assessment of breast cancer risk, wherein a digital image of a breast is obtained and at least one feature, and typically plural features, are extracted from a region of interest in the digital. The extracted features are compared with a predetermined model associating patterns of the extracted features with a risk estimate derived from corresponding feature patterns associated with a predetermined model based on gene carrier information or clinical information, or both gene carrier information and clinical information, and a risk classification index is output as a result of the comparison. Preferred features to be extracted from the digital image include 1) one or more features based on absolute values of gray levels of pixels in said region of interest, 2) one or more features based on gray-level histogram analysis of pixels in said region of interest; 3) one or more features based on Fourier analysis of pixel values in said region of interest; and 4) one or more features based on a spatial relationship among gray levels of pixels within the region of interest.
    • 一种用于乳腺癌风险的计算机化评估的方法,系统和计算机可读介质,其中获得乳房的数字图像,并且从数字的感兴趣区域中提取至少一个特征,并且通常为多个特征。 将提取的特征与预定模型进行比较,所述预定模型将提取的特征的模式与基于基因载体信息或临床信息或基因载体信息和临床信息两者相关联的相应特征模式相关联的风险估计相关联,以及风险 作为比较的结果输出分类索引。 要从数字图像提取的优选特征包括1)基于所述感兴趣区域中的像素的灰度级的绝对值的一个或多个特征,2)基于所述区域中的像素的灰度级直方图分析的一个或多个特征 利益; 3)基于所述感兴趣区域中的像素值的傅里叶分析的一个或多个特征; 以及4)基于感兴趣区域内的像素的灰度级之间的空间关系的一个或多个特征。
    • 33. 发明授权
    • Method and system for the computerized radiographic analysis of bone
    • 骨的计算机化影像学分析方法与系统
    • US5931780A
    • 1999-08-03
    • US158388
    • 1993-11-29
    • Maryellen L. GigerKunio Doi
    • Maryellen L. GigerKunio Doi
    • A61B6/00G06F19/00G06T7/00A61B5/05
    • G06T7/0012A61B6/482A61B6/505A61B6/583A61B6/4042G06T2207/10116G06T2207/30008G06T2207/30012
    • A computerized method and system for the radiographic analysis of bone structure and risk of future fracture with or without the measurement of bone mass. Techniques including texture analysis for use in quantitating the bone structure and risk of future fracture. The texture analysis of the bone structure incorporates directionality information, for example in terms of the angular dependence of the RMS variation and first moment of the power spectrum of a ROI in the bony region of interest. The system also includes using dual energy imaging in order to obtain measures of both bone mass and bone structure with one exam. Specific applications are given for the analysis of regions within the vertebral bodies on conventional spine radiographs. Techniques include novel features that characterize the power spectrum of the bone structure and allow extraction of directionality features with which to characterize the spatial distribution and thickness of the bone trabeculae. These features are then merged using artificial neural networks in order to yield a likelihood of risk of future fracture. In addition, a method and system is presented in which dual-energy imaging techniques are used to yield measures of both bone mass and bone structure with one low-dose radiographic examination; thus, making the system desirable for screening (for osteoporosis and risk of future fracture).
    • 一种计算机化方法和系统,用于骨骼结构的射线照相分析和未来骨折的风险,有或没有骨量的测量。 包括用于量化骨骼结构和未来骨折风险的纹理分析的技术。 骨结构的纹理分析包括方向性信息,例如在感兴趣的骨区域中的ROI的RMS变化和ROI的功率谱的第一时刻的角度依赖性方面。 该系统还包括使用双能量成像,以便通过一次检查获得骨量和骨骼结构的测量。 给出了常规脊柱X光照片对椎体内部区域进行分析的具体应用。 技术包括表征骨骼结构的功率谱的新特征,并且允许提取用于表征骨小梁的空间分布和厚度的方向性特征。 然后使用人工神经网络将这些特征合并,以产生未来骨折风险的可能性。 此外,提出了一种方法和系统,其中使用双能量成像技术通过一次低剂量射线照相检查来产生骨量和骨结构的测量; 因此,使得该系统对于筛选(对于骨质疏松症和未来骨折的风险)是理想的。
    • 34. 发明授权
    • Method and system for enhancement and detection of abnormal anatomic
regions in a digital image
    • 用于增强和检测数字图像中异常解剖区域的方法和系统
    • US4907156A
    • 1990-03-06
    • US68221
    • 1987-06-30
    • Kunio DoiHeang-Ping ChanMaryellen L. Giger
    • Kunio DoiHeang-Ping ChanMaryellen L. Giger
    • G06T5/50G06T7/00
    • G06T5/004G06T7/0002G06T7/0012G06T2207/30064
    • A method and system for detecting and displaying abnormal anatomic regions existing in a digital X-ray image, wherein a single projection digital X-ray image is processed to obtain signal-enhanced image data with a maximum signal-to-noise ratio (SNR) and is also processed to obtain signal-suppressed image data with a suppressed SNR. Then, difference image data are formed by subtraction of the signal-suppressed image data from the signal-enhanced image data to remove low-frequency structured anatomic background, which is basically the same in both the signal-suppressed and signal-enhanced image data. Once the structured background is removed, feature extraction, is performed. For the detection of lung nodules, pixel thresholding is performed, followed by circularity and/or size testing of contiguous pixels surviving thresholding. Threshold levels are varied, and the effect of varying the threshold on circularity and size is used to detect nodules. For the detection of mammographic microcalcifications, pixel thresholding and contiguous pixel area thresholding are performed. Clusters of suspected abnormalities are then detected.
    • 一种用于检测和显示存在于数字X射线图像中的异常解剖区域的方法和系统,其中处理单个投影数字X射线图像以获得具有最大信噪比(SNR)的信号增强图像数据, 并且还被处理以获得具有抑制的SNR的信号抑制图像数据。 然后,通过从信号增强图像数据中减去信号抑制图像数据来形成差分图像数据,以去除信号抑制和信号增强图像数据中基本相同的低频结构解剖背景。 一旦删除结构化背景,就执行特征提取。 对于肺结节的检测,执行像素阈值处理,随后进行阈值处理的连续像素的圆度和/或尺寸测试。 阈值水平变化,并且使用改变阈值对圆度和大小的影响来检测结节。 为了检测乳房X线摄影微钙化,进行像素阈值和连续像素区域阈值处理。 然后检测到疑似异常的群集。