会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 32. 发明申请
    • INTEGRATED INERTIAL SENSOR AND PRESSURE SENSOR, AND FORMING METHOD THEREFOR
    • 一体化传感器和压力传感器及其形成方法
    • US20130340525A1
    • 2013-12-26
    • US14004595
    • 2012-02-23
    • Lianjun Liu
    • Lianjun Liu
    • G01P15/02H01L29/84
    • G01P15/02B81B7/02B81B2201/025B81B2201/0264G01C19/574G01C19/5769G01P15/0802G01P15/125H01L29/84
    • An integrated inertial sensor and pressure sensor may include a first substrate including a first surface and a second surface; at least one or more conductive layers, formed on the first surface of the first substrate; a movable sensitive element, formed by using a first region of the first substrate; a second substrate and a third substrate, the second substrate being coupled to a surface of the conductive layer, the third substrate being coupled to the second surface of the first substrate in which the movable sensitive element of the inertial sensor is formed, and the third substrate and the second substrate are respectively arranged on opposite sides of the movable sensitive element; and a sensitive film of the pressure sensor, including at least a second region of the first substrate, or including at least one of the conductive layers on the second region of the first substrate.
    • 集成的惯性传感器和压力传感器可以包括包括第一表面和第二表面的第一基底; 形成在所述第一基板的所述第一表面上的至少一个或多个导电层; 通过使用第一衬底的第一区域形成的可移动敏感元件; 第二基板和第三基板,所述第二基板耦合到所述导电层的表面,所述第三基板耦合到所述第一基板的形成所述惯性传感器的可移动敏感元件的第二表面,并且所述第三基板 基板和第二基板分别布置在可移动敏感元件的相对侧上; 以及压力传感器的敏感膜,包括第一衬底的至少第二区域,或者在第一衬底的第二区域上包括至少一个导电层。
    • 33. 发明授权
    • Method of forming an electromechanical transducer device
    • 形成机电换能器装置的方法
    • US08513042B2
    • 2013-08-20
    • US13320579
    • 2010-06-15
    • Francois PerruchotLianjun LiuSergio PachecoEmmanuel DefayPatrice Rey
    • Francois PerruchotLianjun LiuSergio PachecoEmmanuel DefayPatrice Rey
    • H01L21/00
    • B81C1/00666B81B2203/0118B81C2201/0167B81C2201/0169
    • A method of forming an electromechanical transducer device comprises forming on a fixed structure a movable structure and an actuating structure of the electromechanical transducer device, wherein the movable structure is arranged in operation of the electromechanical transducer device to be movable in relation to the fixed structure in response to actuation of the actuating structure. The method further comprises providing a stress trimming layer on at least part of the movable structure, after providing the stress trimming layer, releasing the movable structure from the fixed structure to provide a released electromechanical transducer device, and after releasing the movable structure changing stress in the stress trimming layer of the released electromechanical transducer device such that the movable structure is deflected a predetermined amount relative to the fixed structure when the electromechanical transducer device is in an off state.
    • 一种形成机电换能器装置的方法包括在固定结构上形成机电换能器装置的可移动结构和致动结构,其中可移动结构被布置成在机电换能器装置的操作中相对于固定结构可移动 响应致动结构的致动。 该方法还包括在提供应力修剪层之后,在可移动结构的至少一部分上提供应力修剪层,将可移动结构从固定结构释放以提供释放的机电换能器装置,以及在释放可移动结构之后,改变应力 释放的机电换能器装置的应力修剪层,使得当机电换能器装置处于关闭状态时,可移动结构相对于固定结构偏转预定量。
    • 35. 发明申请
    • METHOD OF FORMING AN ELECTROMECHANICAL TRANSDUCER DEVICE
    • 形成机电传感器装置的方法
    • US20120056308A1
    • 2012-03-08
    • US13320579
    • 2010-06-15
    • Francois PerruchotLianjun LiuSergio PachecoEmmanuel DefayPatrice Rey
    • Francois PerruchotLianjun LiuSergio PachecoEmmanuel DefayPatrice Rey
    • H01L29/66H01L21/66
    • B81C1/00666B81B2203/0118B81C2201/0167B81C2201/0169
    • A method of forming an electromechanical transducer device comprises forming on a fixed structure a movable structure and an actuating structure of the electromechanical transducer device, wherein the movable structure is arranged in operation of the electromechanical transducer device to be movable in relation to the fixed structure in response to actuation of the actuating structure. The method further comprises providing a stress trimming layer on at least part of the movable structure, after providing the stress trimming layer, releasing the movable structure from the fixed structure to provide a released electromechanical transducer device, and after releasing the movable structure changing stress in the stress trimming layer of the released electromechanical transducer device such that the movable structure is deflected a predetermined amount relative to the fixed structure when the electromechanical transducer device is in an off state.
    • 一种形成机电换能器装置的方法包括在固定结构上形成机电换能器装置的可移动结构和致动结构,其中可移动结构被布置成在机电换能器装置的操作中相对于固定结构可移动 响应致动结构的致动。 该方法还包括在提供应力修剪层之后,在可移动结构的至少一部分上提供应力修剪层,将可移动结构从固定结构释放以提供释放的机电换能器装置,以及在释放可移动结构之后,改变应力 释放的机电换能器装置的应力修剪层,使得当机电换能器装置处于关闭状态时,可移动结构相对于固定结构偏转预定量。
    • 36. 发明申请
    • ELECTROMECHANICAL TRANSDUCER DEVICE AND METHOD OF FORMING A ELECTROMECHANICAL TRANSDUCER DEVICE
    • 机电传感器装置及形成机电传感器装置的方法
    • US20110233693A1
    • 2011-09-29
    • US13128035
    • 2009-11-25
    • François PerruchotEmmanuel DefayPatrice ReyLianjun LiuSergio Pacheco
    • François PerruchotEmmanuel DefayPatrice ReyLianjun LiuSergio Pacheco
    • H01L29/84H01L21/02
    • B81B3/0072B81B2201/032H01L41/0933H01L41/094
    • A micro or nano electromechanical transducer device formed on a semiconductor substrate comprises a movable structure which is arranged to be movable in response to actuation of an actuating structure. The movable structure comprises a mechanical structure comprising at least one mechanical layer having a first thermal response characteristic and a first mechanical stress response characteristic, at least one layer of the actuating structure, the at least one layer having a second thermal response characteristic different to the first thermal response characteristic and a second mechanical stress response characteristic different to the first mechanical stress response characteristic, a first compensation layer having a third thermal response characteristic and a third mechanical stress characteristic, and a second compensation layer having a fourth thermal response characteristic and a fourth mechanical stress response characteristic. The first and second compensation layers are arranged to compensate a thermal effect produced by the different first and second thermal response characteristics of the mechanical structure and the at least one layer of the actuating structure such that movement of the movable structure is substantially independent of variations in temperature and to adjust a stress effect produced by the different first and second stress response characteristics of the mechanical structure and the at least one layer of the actuating structure such that the movable structure is deflected a predetermined amount relative to the substrate when the electromechanical transducer device is in an inactive state.
    • 形成在半导体衬底上的微型或纳米机电换能器装置包括可移动结构,其被布置成响应于致动结构的致动而是可移动的。 可移动结构包括机械结构,其包括具有第一热响应特性和第一机械应力响应特性的至少一个机械层,所述致动结构的至少一层,所述至少一层具有与 第一热响应特性和与第一机械应力响应特性不同的第二机械应力响应特性,具有第三热响应特性和第三机械应力特性的第一补偿层,以及具有第四热响应特性的第二补偿层和 第四机械应力响应特性。 第一和第二补偿层布置成补偿由机械结构和致动结构的至少一个层的不同的第一和第二热响应特性产生的热效应,使得可移动结构的移动基本上与 并且调节由所述机械结构和所述致动结构的所述至少一个层的不同的第一和第二应力响应特性产生的应力效应,使得当所述机电换能器装置 处于非活动状态。
    • 39. 发明授权
    • Self-poling piezoelectric MEMs device
    • 自极化压电MEMs器件
    • US07732991B2
    • 2010-06-08
    • US11864266
    • 2007-09-28
    • Lianjun Liu
    • Lianjun Liu
    • H01L41/08
    • B81B3/0086B81B2201/0235B81B2203/0118H01H57/00H01H2057/006H01L41/094H01L41/257
    • A self-poling piezoelectric based MEMS device is configured for piezoelectric actuation in response to application of a device operating voltage. The MEMS device comprises a beam, a first electrode disposed on the beam, a layer of piezoelectric material having a self-poling thickness disposed overlying a portion of the first electrode, and a second electrode overlying the layer of piezoelectric material. The layer of piezoelectric material is self-poled in response to application of the device operating voltage across the first and second electrodes. In addition, the self-poled piezoelectric material has a poling direction established according to a polarity orientation of the device operating voltage as applied across the first and second electrodes.
    • 响应于器件工作电压的应用,自极化基于压电的MEMS器件被配置为用于压电致动。 MEMS器件包括光束,设置在光束上的第一电极,具有设置在第一电极的一部分上的自极化厚度的压电材料层和覆盖在压电材料层上的第二电极。 响应于在第一和第二电极上施加器件工作电压,压电材料层是自极化的。 此外,自极化压电材料具有根据施加在第一和第二电极上的器件工作电压的极性取向而建立的极化方向。
    • 40. 发明授权
    • Control and testing of a micro electromechanical switch having a piezo element
    • 具有压电元件的微机电开关的控制和测试
    • US07586238B2
    • 2009-09-08
    • US11465319
    • 2006-08-17
    • Lianjun Liu
    • Lianjun Liu
    • H01L41/04H01H57/00
    • H01H59/0009H01H1/50H01H11/0062H01H47/002H01H2057/006H01H2201/02
    • A micro electromechanical switch has a movable portion positioned to form an electrical connection between a first electrical contact and a second electrical contact. A piezoelectric electrode is formed on the movable portion. The piezoelectric electrode causes the movable portion to move in response to a driver voltage. A piezo element is formed on the movable portion of the switch. The piezo element is for detecting movement of the movable portion between an open position and a closed position. The piezo element is also used to detect switch bouncing when the switch transitions from the open position to the closed position. In one embodiment, the piezo element is a piezoelectric element and in another embodiment the piezo element is a piezo-resistive element.
    • 微机电开关具有可移动部分,其被定位成在第一电接触件和第二电接触件之间形成电连接。 压电电极形成在可动部分上。 压电电极使可动部分响应于驱动器电压而移动。 压电元件形成在开关的可移动部分上。 压电元件用于检测可动部分在打开位置和关闭位置之间的移动。 当开关从打开位置转换到关闭位置时,压电元件还用于检测开关跳动。 在一个实施例中,压电元件是压电元件,在另一个实施例中,压电元件是压电元件。