会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 32. 发明授权
    • Mobile architecture using cloud for data mining application
    • 移动架构使用云进行数据挖掘应用
    • US08639008B2
    • 2014-01-28
    • US13449518
    • 2012-04-18
    • Jasjit S. Suri
    • Jasjit S. Suri
    • G06K9/00
    • A61B5/0013A61B5/0022A61B5/02007A61B5/055A61B6/5217A61B8/5223G06F19/00G06F19/321G16H10/60G16H50/20G16H50/30G16H50/70
    • Three tier architecture for image-based diagnosis and monitoring application using Cloud is described. The presentation layer is run on the tablet (mobile device), while the business and persistence layer runs on a single cloud or distributed on different Clouds in a multi-tenancy and multi-user application. Such architecture is used for automated data mining application for computing (a) cardiovascular risk, stroke risk using IMT measurement, plaque characterization, (b) computing diagnostic index for benign vs. malignant tissue for ovarian cancer classification (c) benign vs. malignant tissue characterization for prostate cancer and (d) classification of fatty liver disease vs. normal cases. The Architecture is for data mining application.
    • 描述了使用云的基于图像的诊断和监控应用的三层架构。 表现层在平板电脑(移动设备)上运行,而业务和持久层在多租户和多用户应用程序中运行在单个云上或分布在不同的云上。 这种架构用于计算自动化数据挖掘应用(a)使用IMT测量,斑块表征的心血管风险,卒中风险,(b)用于卵巢癌分类的良性与恶性组织的计算诊断指标(c)良性与恶性组织 表征前列腺癌和(d)脂肪肝疾病与正常情况的分类。 架构用于数据挖掘应用。
    • 34. 发明申请
    • Non-Invasive Imaging-Based Prostate Cancer Prediction
    • 基于非侵入性成像的前列腺癌预测
    • US20120163693A1
    • 2012-06-28
    • US13412118
    • 2012-03-05
    • Jasjit S. Suri
    • Jasjit S. Suri
    • G06K9/00
    • G06T7/0012G06T7/41G06T2207/10072G06T2207/10132G06T2207/20081G06T2207/30081
    • A system (UroImage™) is an imaging based system for predicting if the prostate is cancerous or not using non-invasive ultrasound. The method is an on-line system where region of interest processor computes the capsule region in the Urological image. The feature extraction processor finds the significant features such as non-linear higher order spectra and high pass filter discrete wavelet based features, and combines them. The on-line classifier processor uses along with the training-based parameters to estimate and predicate if the patient's prostate is cancerous or not. The UroImage™ also introduces the applicability of this system for MR, CT or fusion of these modalities with ultrasound for predicting cancer.
    • 系统(UroImage™)是一种基于成像的系统,用于使用非侵入性超声预测前列腺癌是否癌变。 该方法是在线系统,其中感兴趣区域处理器计算泌尿图像中的胶囊区域。 特征提取处理器发现诸如非线性高阶谱和基于离散小波的高通滤波特征的重要特征,并将其组合。 在线分类器处理器与基于训练的参数一起使用,以估计和判断患者的前列腺是否癌变。 UroImage™还介绍了该系统对MR,CT或这些模式与超声波预测癌症融合的适用性。
    • 35. 发明申请
    • Imaging Based Symptomatic Classification Using a Combination of Trace Transform, Fuzzy Technique and Multitude of Features
    • 使用跟踪变换,模糊技术和多种特征组合的基于成像的症状分类
    • US20120078099A1
    • 2012-03-29
    • US13253952
    • 2011-10-05
    • Jasjit S. Suri
    • Jasjit S. Suri
    • A61B8/00
    • A61B8/483A61B8/0891A61B8/12G01R33/5608
    • A statistical (a) Computer Aided Diagnostic (CAD) technique is described for symptomatic versus asymptomatic plaque automated classification of carotid ultrasound images and (b) presents a cardiovascular risk score computation. We demonstrate this for longitudinal Ultrasound, CT, MR modalities and extendable to 3D carotid Ultrasound. The on-line system consists of Atherosclerotic Wall Region estimation using AtheroEdge™ for longitudinal Ultrasound or Athero-CTView™ for CT or Athero-MRView from MR. This greyscale Wall Region is then fed to a feature extraction processor which uses the combination: (a) Higher Order Spectra; (b) Discrete Wavelet Transform (DWT); (c) Texture and (d) Wall Variability. Another combination uses: (a) Local Binary Pattern; (b) Law's Mask Energy and (c) Wall Variability. Another combination uses: (a) Trace Transform; (b) Fuzzy Grayscale Level Co-occurrence Matrix and (c) Wall Variability. The output of the Feature Processor is fed to the Classifier which is trained off-line.
    • 描述了用于颈动脉超声图像的症状与无症状斑块自动分类的统计学(a)计算机辅助诊断(CAD)技术,以及(b)呈现心血管风险评分计算。 我们展示了纵向超声,CT,MR方式,并可扩展到三维颈动脉超声。 在线系统由动脉粥样硬化壁区域估计,使用AtheroEdge™进行纵向超声波或用于CT的Athero-CTView™或来自MR的Athero-MRView。 然后将这个灰度级的墙区域馈送到使用以下组合的特征提取处理器:(a)高阶光谱; (b)离散小波变换(DWT); (c)纹理和(d)壁变化。 另一种组合使用:(a)本地二进制模式; (b)法律面具能量和(c)墙面变异性。 另一种组合使用:(a)轨迹变换; (b)模糊灰度等级共生矩阵和(c)墙壁变异性。 特征处理器的输出被馈送到离线训练的分类器。
    • 36. 发明申请
    • Method for breast screening in fused mammography
    • 融合乳房X线照相术中乳房筛查的方法
    • US20100111379A1
    • 2010-05-06
    • US11632078
    • 2005-07-07
    • Jasjit S. SuriYajie Sun
    • Jasjit S. SuriYajie Sun
    • G06K9/00
    • A61B6/5247A61B6/032A61B6/4417A61B6/502A61B6/52A61B6/5217A61B8/0825A61B8/4416A61B8/5238G06T7/0012G06T7/0081G06T7/0091G06T7/11G06T7/12G06T7/155G06T7/168G06T11/003G06T2207/10112G06T2207/10116G06T2207/10136G06T2207/20016G06T2207/20076G06T2207/20168G06T2207/30068G06T2207/30096
    • A method for use in medical imaging of a patient including, with the patient immobilized with respect to an imaging reference frame, acquiring first digital imaging information including a first region of interest using a first imaging modality; processing the first digital imaging information to identify a feature for analysis; and using a second imaging modality to acquire targeted second imaging information for a second region of interest, the second region of interest corresponding to a subset of the first region of interest, wherein the second region of interest includes the feature for analysis. An apparatus for use in medical imaging comprising structure for immobilizing a patient with respect to an imaging reference frame; a first imaging system for acquiring first digital imaging information including a first region of interest using a first imaging modality; a processor processing the first digital imaging information using a diagnostic tool to identify a feature of interest; and a second imaging system for acquiring second imaging information using a second imaging modality, the second imaging information corresponding to a second region of interest including the feature for analysis.
    • 一种用于患者的医学成像的方法,包括:相对于成像参考系被固定的患者,使用第一成像模态获取包括第一感兴趣区域的第一数字成像信息; 处理第一数字成像信息以识别用于分析的特征; 以及使用第二成像模式来获取第二感兴趣区域的目标第二成像信息,所述第二感兴趣区域对应于所述第一感兴趣区域的子集,其中所述第二感兴趣区域包括用于分析的特征。 一种用于医学成像的装置,包括用于使患者相对于成像参考框架固定的结构; 第一成像系统,用于使用第一成像模态获取包括第一感兴趣区域的第一数字成像信息; 处理器使用诊断工具处理所述第一数字成像信息,以识别感兴趣的特征; 以及第二成像系统,用于使用第二成像模式获取第二成像信息,所述第二成像信息对应于包括用于分析的特征的第二感兴趣区域。
    • 37. 发明授权
    • Image segmentation of embedded shapes using constrained morphing
    • 使用约束变形的嵌入形状的图像分割
    • US06813373B1
    • 2004-11-02
    • US09825028
    • 2001-04-03
    • Jasjit S. SuriKecheng LiuLaura M. Reden
    • Jasjit S. SuriKecheng LiuLaura M. Reden
    • G06K300
    • G06T5/002G06K9/00201G06T5/30G06T7/155G06T2207/10088G06T2207/20161G06T2207/20192G06T2207/30016G06T2207/30028
    • An imaging system and method enables 3-D direct segmentation from a series of spatially offset 2-D image slices in a volume scan. The algorithm first smoothes and preserves the interface edges of the image volume using Bottom-Hat gray scale morphological transform followed by 3-D segmentation using fast 3-D level sets by preserving topology constraints, for example, cortical thickness in a brain volume. The method inputs opposite polarity spheres (contracting and expanding spheres) which morph into shapes within the volume using a surface propagation technique. The speed of propagation is controlled by the likelihood statistical component derived under constraints. During the propagation polygonalization extracts the zero-level surface set. The field distribution is computed using the improved shortest distance method or polyline distance method. The morphing algorithm then morphs the input concentric spheres into interface surfaces such as WM-GM and GM-CSF with cortical constraint. The system is optimized by computing the 3-D field in the narrow band on the morphing spheres.
    • 成像系统和方法使得能够在体扫描中从一系列空间偏移的2-D图像切片中进行3-D直接分割。 该算法首先使用Bottom-Hat灰度形态变换平滑并保留图像体积的界面边缘,然后通过保留拓扑约束,例如脑体积中的皮质厚度,使用快速3-D级集合进行3-D分割。 该方法使用表面传播技术输入相反的极性球体(收缩和扩张球体),其变形成体积内的形状。 传播的速度由在约束条件下导出的似然统计分量来控制。 在传播多边形期间提取零级表面集合。 使用改进的最短距离法或折线距离法计算场分布。 变形算法然后将输入的同心球变形为界面表面,如具有皮质约束的WM-GM和GM-CSF。 该系统通过计算变形球体上窄带中的3-D场进行优化。
    • 38. 发明授权
    • Segmentation method and apparatus for medical images using diffusion propagation, pixel classification, and mathematical morphology
    • 使用扩散传播,像素分类和数学形态的医学图像的分割方法和装置
    • US06785409B1
    • 2004-08-31
    • US09695667
    • 2000-10-24
    • Jasjit S. Suri
    • Jasjit S. Suri
    • G06K900
    • G06T7/0012G06T7/12G06T7/155G06T2207/20132G06T2207/30016
    • A method of digital imaging includes receiving image data and fitting a curve to boundaries within the image data. The curve is fit to the boundaries within the image data by extracting a region of interest from the image data and computing a signed distance transform in a narrow band within the region of interest. Finite difference equations including various variables are solved to determine a rate at which the distance transform changes. The distance transform is then diffused at that rate. The technique is based on region-based diffusion propagation, pixel classification, and mathematical morphology. The method is implemented to run in the narrow band of the region of interest specified by the user and the computations are implemented using a fast marching method in the narrow band. While idealized for distinguishing segments of white matter, gray matter, and cerebral spinal fluid in the brain, the algorithm can applied to find contours in any digital image.
    • 数字成像的方法包括接收图像数据并将曲线拟合到图像数据内的边界。 通过从图像数据中提取感兴趣区域并计算感兴趣区域内的窄带中的带符号距离变换,使曲线适合图像数据内的边界。 解决了包含各种变量的有限差分方程,以确定距离变换变化的速率。 然后将距离变换以该速率扩散。 该技术基于区域扩散传播,像素分类和数学形态学。 该方法被实现为在用户指定的感兴趣区域的窄带中运行,并且使用在窄带中的快速行进方法来实现计算。 理想化用于区分大脑中白质,灰质和脑脊髓液的部分,该算法可应用于在任何数字图像中找到轮廓。
    • 39. 发明授权
    • Multi-resolution edge flow approach to vascular ultrasound for intima-media thickness (IMT) measurement
    • 多分辨率边缘流动方法用于内膜 - 中膜厚度(IMT)测量的血管超声
    • US08485975B2
    • 2013-07-16
    • US12896875
    • 2010-10-02
    • Jasjit S. Suri
    • Jasjit S. Suri
    • A61B8/00G06K9/00
    • A61B8/0891A61B8/0858A61B8/5223A61B8/5269A61B8/565G06F19/00G06T7/0012G06T7/12G06T7/62G06T2207/10132G06T2207/20016G06T2207/20132G06T2207/30101
    • A computer-implemented system and method for fast, reliable, and automated embodiments for using a multi-resolution edge flow approach to vascular ultrasound for intima-media thickness (IMT) measurement. Various embodiments include receiving biomedical imaging data and patient demographic data corresponding to a current scan of a patient; checking the biomedical imaging data in real-time to determine if an artery of the patient has a calcium deposit in a proximal wall of the artery; acquiring arterial data of the patient as a combination of longitudinal B-mode and transverse B-mode data; using a data processor to automatically recognize the artery; using the data processor to calibrate a region of interest around the automatically recognized artery; automatically computing the weak or missing edges of intima-media and media-adventitia walls using edge flow, labeling and connectivity; and determining the intima-media thickness (IMT) of an arterial wall of the automatically recognized artery.
    • 一种用于快速,可靠和自动化实施例的计算机实现的系统和方法,用于使用多分辨率边缘流动方法进行血管超声以用于内膜 - 中膜厚度(IMT)测量。 各种实施例包括接收对应于患者的当前扫描的生物医学成像数据和患者人口统计数据; 实时检查生物医学成像数据,以确定患者的动脉是否在动脉近端壁具有钙沉积物; 获取患者的动脉数据作为纵向B模式和横向B模式数据的组合; 使用数据处理器自动识别动脉; 使用数据处理器校准在自动识别的动脉周围的感兴趣区域; 使用边缘流,标签和连接自动计算内膜和媒体 - 外膜壁的弱或缺失边缘; 并确定自动识别的动脉的动脉壁的内膜 - 中膜厚度(IMT)。
    • 40. 发明申请
    • MULTI-RESOLUTION EDGE FLOW APPROACH TO VASCULAR ULTRASOUND FOR INTIMA-MEDIA THICKNESS (IMT) MEASUREMENT
    • 用于血浆超声(IMT)测量的多分辨率边缘流量方法
    • US20110299753A1
    • 2011-12-08
    • US12896875
    • 2010-10-02
    • Jasjit S. Suri
    • Jasjit S. Suri
    • G06K9/00
    • A61B8/0891A61B8/0858A61B8/5223A61B8/5269A61B8/565G06F19/00G06T7/0012G06T7/12G06T7/62G06T2207/10132G06T2207/20016G06T2207/20132G06T2207/30101
    • A computer-implemented system and method for fast, reliable, and automated embodiments for using a multi-resolution edge flow approach to vascular ultrasound for intima-media thickness (IMT) measurement. Various embodiments include receiving biomedical imaging data and patient demographic data corresponding to a current scan of a patient; checking the biomedical imaging data in real-time to determine if an artery of the patient has a calcium deposit in a proximal wall of the artery; acquiring arterial data of the patient as a combination of longitudinal B-mode and transverse B-mode data; using a data processor to automatically recognize the artery; using the data processor to calibrate a region of interest around the automatically recognized artery; automatically computing the weak or missing edges of intima-media and media-adventitia walls using edge flow, labeling and connectivity; and determining the intima-media thickness (IMT) of an arterial wall of the automatically recognized artery.
    • 一种用于快速,可靠和自动化实施例的计算机实现的系统和方法,用于使用多分辨率边缘流动方法进行血管超声以用于内膜 - 中膜厚度(IMT)测量。 各种实施例包括接收对应于患者的当前扫描的生物医学成像数据和患者人口统计数据; 实时检查生物医学成像数据,以确定患者的动脉是否在动脉近端壁具有钙沉积物; 获取患者的动脉数据作为纵向B模式和横向B模式数据的组合; 使用数据处理器自动识别动脉; 使用数据处理器校准在自动识别的动脉周围的感兴趣区域; 使用边缘流,标签和连接自动计算内膜和媒体 - 外膜壁的弱或缺失边缘; 并确定自动识别的动脉的动脉壁的内膜 - 中膜厚度(IMT)。