会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Method and system to reduce stray light reflection error in time-of-flight sensor arrays
    • 降低飞行时间传感器阵列杂散光反射误差的方法和系统
    • US08194233B2
    • 2012-06-05
    • US12384949
    • 2009-04-10
    • Cyrus Bamji
    • Cyrus Bamji
    • G01C3/08
    • G01S17/89G01S7/497G01S17/36
    • Haze-type phase shift error due to stray light reflections in a phase-type TOF system is reduced by providing a windowed opaque coating on the sensor array surface, the windows permitting optical energy to reach light sensitive regions of the pixels, and by reducing optical path stray reflection. Further haze-type error reduction is obtained by acquiring values for a plurality (but not necessarily all) of pixel sensors in the TOF system pixel sensor array. Next, a correction term for the value (differential or other) acquired for each pixel in the plurality of pixel sensors is computed and stored. Modeling response may be made dependent upon pixel (row, column) location within the sensor array. During actual TOF system runtime operation, detection data for each pixel, or pixel groups (super pixels) is corrected using the stored data. Good optical system design accounts for correction, enabling a simple correction model.
    • 通过在传感器阵列表面上提供窗口不透明涂层,允许光能到达像素的光敏区域的窗口,以及通过减少光学元件来减少由相位型TOF系统中的杂散光反射引起的散射型相移误差 路径偏离反射。 通过获取TOF系统像素传感器阵列中的多个(但不是全部)像素传感器的值来获得进一步的雾度型误差减小。 接下来,计算并存储针对多个像素传感器中的每个像素获取的值(差分或其他)的校正项。 建模响应可以取决于传感器阵列内的像素(行,列)位置。 在实际的TOF系统运行时间操作期间,使用所存储的数据校正每个像素或像素组(超像素)的检测数据。 良好的光学系统设计考虑到校正,实现了简单的校正模型。
    • 32. 发明授权
    • Video manipulation of red, green, blue, distance (RGB-Z) data including segmentation, up-sampling, and background substitution techniques
    • 红色,绿色,蓝色,距离(RGB-Z)数据的视频处理,包括分割,上采样和背景替换技术
    • US08139142B2
    • 2012-03-20
    • US12004305
    • 2007-12-20
    • Cyrus BamjiAbbas RafiiRyan E. Crabb
    • Cyrus BamjiAbbas RafiiRyan E. Crabb
    • G03B13/00H04N9/07H04N5/225H04N13/02G01C3/08
    • G01S17/89G01S17/36G01S17/936H04N5/2355H04N9/045H04N13/128H04N13/271
    • RGB-Z imaging systems acquire RGB data typically with a high X-Y resolution RGB pixel array, and acquire Z-depth data with an array of physically larger Z pixels having additive signal properties. In each acquired frame, RGB pixels are mapped to a corresponding Z pixel. Z image resolution is enhanced by identifying Z discontinuities and identifying corresponding RGB pixels where the Z discontinuities occur. Thus segmented data enables RGB background substitution, which preferably blends foreground pixel color and substitute background color. The segmented data also enables up-sampling in which a higher XY resolution Z image with accurate Z values is obtained. Up-sampling uses an equation set enabling assignment of accurate Z values to RGB pixels. Fixed acquisition frame rates are enabled by carefully culling bad Z data. Segmenting and up-sampling enhanced video effects and enable low cost, low Z resolution arrays to function comparably to higher quality, higher resolution Z arrays.
    • RGB-Z成像系统通常采用高X-Y分辨率RGB像素阵列获取RGB数据,并采用具有加性信号特性的物理上较大的Z像素阵列获取Z深度数据。 在每个获取的帧中,RGB像素被映射到相应的Z像素。 通过识别Z不连续性并识别发生Z不连续性的相应RGB像素来增强Z图像分辨率。 因此,分段数据可以进行RGB背景替换,其优选地将前景像素颜色和替代背景颜色混合。 分段数据还可以进行上采样,其中获得具有精确Z值的较高XY分辨率Z图像。 上采样使用能够将精确Z值分配给RGB像素的方程组。 通过仔细剔除不良Z数据可以实现固定采集帧速率。 分段和上采样增强的视频效果,并使低成本,低Z分辨率阵列能够与更高质量,更高分辨率的Z阵列相比较。
    • 33. 发明申请
    • Method and system to maximize space-time resolution in a Time-of-Flight (TOF) system
    • 在飞行时间(TOF)系统中最大化时空分辨率的方法和系统
    • US20110292370A1
    • 2011-12-01
    • US12802117
    • 2010-05-29
    • Gage HillsTravis PerryCyrus Bamji
    • Gage HillsTravis PerryCyrus Bamji
    • G01C3/08
    • G01S17/89G01C3/08G01S7/4912G01S17/36
    • Phase-based TOF systems operate with reduced depth error due to motion blur, and/or spatial blur, and/or pixel offset by intelligently determining how best to combine pixel values, and how best to compensate for individual pixel offsets. Such determination(s) may be carried out on a per pixel basis, dynamically, in real-time during TOF operation, or on archived TOF data. Offsets for individual pixels may be dynamically calculated and subtracted from the values acquired by those pixels Individual pixel offsets may be calculated for example by combining data acquired by the same pixel at two acquisitions, 180° out of phase with respect to each other. Calculated offsets may be averaged, or on a per pixel basis, and if target object motion is detected, one or more offset calculations can be discarded rather than averaged to reduce motion blur. Offsets acquired a priori during a TOF system calibration procedure may be used.
    • 基于相位的TOF系统通过智能地确定如何最佳地组合像素值,以及如何最佳地补偿各个像素偏移,由于运动模糊和/或空间模糊,和/或像素偏移而减小深度误差。 这样的确定可以在TOF操作期间或在存档的TOF数据上以动态方式在每像素的基础上进行。 可以动态地计算各个像素的偏移量并从由这些像素获取的值中减去。例如,可以通过将由相同像素获取的数据在两次采集中相对于彼此相位相差180°而组合来计算各个像素偏移。 计算的偏移量可以被平均,或者基于每个像素,并且如果检测到目标物体运动,则可以丢弃一个或多个偏移计算而不是平均以减少运动模糊。 可以使用在TOF系统校准过程中先验获得的偏移。
    • 34. 发明授权
    • Methods and devices for improved charge management for three-dimensional and color sensing
    • 改进三维和彩色感应电荷管理的方法和装置
    • US07994465B1
    • 2011-08-09
    • US12079686
    • 2008-03-28
    • Cyrus BamjiHakan Yalcin
    • Cyrus BamjiHakan Yalcin
    • H01J40/14
    • G01S7/4816G01J3/50G01S7/4914G01S17/08G01S17/36G01S17/89H01L27/14643
    • TOF and color sensing detector structures have x-axis spaced-apart y-axis extending finger-shaped gate structures with adjacent source collection regions. X-dimension structures are smaller than y-dimension structure and govern performance, characterized by high x-axis electric fields and rapid charge movement, contrasted with lower y-axis electric fields and slower charge movement. Preferably a potential barrier is implanted between adjacent gates and a bias gate is formed intermediate a gate and associated source region. For color detection sensor devices, gate bias voltage signals VA, VB coupled to the finger-shaped gate structures are high during sub-integration periods t1 and are low during a shorter charge movement period t2. In one embodiment, alternate finger-shaped gate structures preferable have different high magnitude sub-integration period voltages that enable detected ambient optical energy of different wavelengths to be discerned. Resultant detector structures can be operated at the more extreme gate voltages that are desirable for high performance.
    • TOF和颜色感测检测器结构具有x轴间隔开的y轴延伸的具有相邻源收集区域的指状栅极结构。 X维结构小于y维结构并且控制性能,其特征在于高x轴电场和快速电荷运动,与较低的y轴电场和较慢的电荷运动形成对比。 优选地,在相邻栅极之间注入势垒,并且在栅极和相关源极区之间形成偏压栅极。 对于颜色检测传感器装置,在子积分时段t1期间耦合到指状栅极结构的栅极偏置电压信号VA,VB是高的,并且在较短的电荷移动周期t2期间为低。 在一个实施例中,交替的指形栅极结构优选地具有不同的高幅度亚积分周期电压,使得能够识别不同波长的检测到的环境光能。 所产生的检测器结构可以在高性能所需的更极端的栅极电压下工作。
    • 35. 发明授权
    • Method and system for fast calibration of three-dimensional (3D) sensors
    • 三维(3D)传感器快速校准的方法和系统
    • US07936449B1
    • 2011-05-03
    • US12800634
    • 2010-05-18
    • Cyrus BamjiHakan Yalcin
    • Cyrus BamjiHakan Yalcin
    • G01C3/08
    • G01C3/08G01C25/00G01S7/497G01S17/36G01S17/89
    • Rapid calibration of a TOF system uses a stationary target object and electrically introduces phase shift into the TOF system to emulate target object relocation. Relatively few parameters suffice to model a parameterized mathematical representation of the transfer function between measured phase and Z distance. The phase-vs-distance model is directly evaluated during actual run-time operation of the TOF system. Preferably modeling includes two components: electrical modeling of phase-vs-distance characteristics that depend upon electrical rather than geometric characteristics of the sensing system, and elliptical modeling that phase-vs-distance characteristics that depending upon geometric rather than electrical characteristics of the sensing system.
    • TOF系统的快速校准使用固定的目标物体,并将相移电相引入到TOF系统中以模拟目标物体重定位。 相对较少的参数足以对测量相位和Z距离之间的传递函数进行参数化数学表示。 在TOF系统的实际运行时间期间直接评估相位对距离模型。 建模模型最好包括两个组件:取决于感应系统的电而不是几何特性的相位 - 距离特性的电气建模,以及取决于传感系统的几何而不是电特性的相位 - 距离特性的椭圆建模 。
    • 36. 发明授权
    • Method and system for fast calibration of three-dimensional (3D) sensors
    • 三维(3D)传感器快速校准的方法和系统
    • US07471376B2
    • 2008-12-30
    • US11825582
    • 2007-07-06
    • Cyrus BamjiHakan Yalcin
    • Cyrus BamjiHakan Yalcin
    • G01C5/00
    • G01C3/08G01C25/00G01S7/497G01S17/36G01S17/89
    • Rapid calibration of a TOF system uses a stationary target object and electrically introduces phase shift into the TOF system to emulate target object relocation. Relatively few parameters suffice to model a parameterized mathematical representation of the transfer function between measured phase and Z distance. The phase-vs-distance model is directly evaluated during actual run-time operation of the TOF system. Preferably modeling includes two components: electrical modeling of phase-vs-distance characteristics that depend upon electrical rather than geometric characteristics of the sensing system, and elliptical modeling that phase-vs-distance characteristics that depending upon geometric rather than electrical characteristics of the sensing system.
    • TOF系统的快速校准使用固定的目标物体,并将相移电相引入到TOF系统中以模拟目标物体重定位。 相对较少的参数足以对测量相位和Z距离之间的传递函数进行参数化数学表示。 在TOF系统的实际运行时间期间直接评估相位对距离模型。 建模模型最好包括两个组件:取决于感应系统的电而不是几何特性的相位 - 距离特性的电气建模,以及取决于传感系统的几何而不是电特性的相位 - 距离特性的椭圆建模 。
    • 38. 发明授权
    • Method and apparatus to optimize an integrated circuit design using transistor folding
    • 使用晶体管折叠优化集成电路设计的方法和装置
    • US06968524B2
    • 2005-11-22
    • US10240436
    • 2001-03-30
    • Yanbin JiangIlhami TorunogluCyrus Bamji
    • Yanbin JiangIlhami TorunogluCyrus Bamji
    • G06F17/50H01L27/02
    • H01L27/0207G06F17/5068
    • A method and system are disclosed to optimize an integrated circuit layout design by determining possible lengths of layout rows that will reduce the total area of the integrated circuit layout (FIG. 4B). The possible row lengths (401B) are determined and stored in a memory unit as a set of possible optimal row length values. A set of possible optimal row heights corresponding to the determined set of possible rowlengths is determined and the total chip area is iteratively calculated. Optimal values of rowlength and row height are chosen based upon the maximum chip area reduction. Once the optimal row length and height parameters are chosen, transistor devices placed in each row of the integrated circuit layout are folded to achieve the optimal row length and height.
    • 公开了一种通过确定将减小集成电路布局的总面积的布局行的可能长度来优化集成电路布局设计的方法和系统(图4B)。 可能的行长度(401B)被确定并存储在存储器单元中,作为一组可能的最佳行长度值。 确定对应于确定的可能行长度的集合的一组可能的最佳行高,并且迭代地计算总芯片面积。 根据最大芯片面积减少量选择行长和行高的最优值。 一旦选择了最佳的行长度和高度参数,放置在集成电路布局的每一行中的晶体管器件被折叠以实现最佳的行长和高度。
    • 40. 发明授权
    • CMOS-compatible three-dimensional image sensing using reduced peak energy
    • 使用降低峰值能量的CMOS兼容三维图像感测
    • US06587186B2
    • 2003-07-01
    • US09876373
    • 2001-06-06
    • Cyrus BamjiEdoardo Charbon
    • Cyrus BamjiEdoardo Charbon
    • G01C308
    • G01S7/491G01C3/04G01S17/08G01S17/32G01S17/58G01S17/87G01S17/89
    • A three-dimensional time-of-flight (TOF) system includes a low power optical emitter whose idealized output S1=cos(&ohgr;·t) is reflected by a target distance z away as S2=A·cos(&ohgr;·t+&PHgr;), for detection by a two-dimensional array of pixel detectors and associated narrow bandwidth detector electronics and processing circuitry preferably fabricated on a common CMOS IC. Phase shift &PHgr; is proportional to TOF or z, z=&PHgr;·C/2·&ohgr;=&PHgr;·C/{2·(2·&pgr;·f)}, and A is brightness. &PHgr;, z, and A are determined by homodyne-mixing S2 with an internally generated phase-delayed version of S1, whose phase is dynamically forced to match the phase of S2 by closed-loop feedback. Idealized mixer output per each pixel detector is 0.5·A·{cos(2&ohgr;·t+&PHgr;)+cos(&PHgr;)}. On-chip circuitry can use TOE data to simultaneously measure distance, object point velocity, object contours, including user interface with virtual input devices.
    • 三维飞行时间(TOF)系统包括一个低功率光发射器,其理想输出S1 = cos(ωg.t)被目标距离z反射,因为S2 = A.cos(ωgt+ PHI ),用于通过二维阵列的像素检测器和相关联的窄带检测器电子器件和优选地制造在公共CMOS IC上的处理电路进行检测。 相移PHI与TOF或z成比例,z = PHI.C / 2.omega = PHI.C / {2.(2.pi.f)},A为亮度。 PHI,Z和A通过零差混合S2与内部产生的相位延迟版本S1来确定,其相位被动态地通过闭环反馈来匹配S2的相位。 每个像素检测器的理想混频器输出为0.5.A. {cos(2omega.t + PHI)+ cos(PHI)}。 片上电路可以使用TOE数据同时测量距离,物点速度,物体轮廓,包括与虚拟输入设备的用户界面。