会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明申请
    • COST-BENEFIT APPROACH TO AUTOMATICALLY COMPOSING ANSWERS TO QUESTIONS BY EXTRACTING INFORMATION FROM LARGE UNSTRUCTURED CORPORA
    • 成本效益自动组合方式从大型非结构性公司提取信息提出问题
    • US20090192966A1
    • 2009-07-30
    • US12417959
    • 2009-04-03
    • Eric J. HorvitzDavid R. AzariSusan T. DumaisEric D. Brill
    • Eric J. HorvitzDavid R. AzariSusan T. DumaisEric D. Brill
    • G06N5/02
    • G06F17/30684G06F17/30687Y10S707/99933
    • The present invention relates to a system and methodology to facilitate extraction of information from a large unstructured corpora such as from the World Wide Web and/or other unstructured sources. Information in the form of answers to questions can be automatically composed from such sources via probabilistic models and cost-benefit analyses to guide resource-intensive information-extraction procedures employed by a knowledge-based question answering system. The analyses can leverage predictions of the ultimate quality of answers generated by the system provided by Bayesian or other statistical models. Such predictions, when coupled with a utility model can provide the system with the ability to make decisions about the number of queries issued to a search engine (or engines), given the cost of queries and the expected value of query results in refining an ultimate answer. Given a preference model, information extraction actions can be taken with the highest expected utility. In this manner, the accuracy of answers to questions can be balanced with the cost of information extraction and analysis to compose the answers.
    • 本发明涉及一种便利从诸如万维网和/或其他非结构化来源的大型非结构化语料库提取信息的系统和方法。 通过概率模型和成本效益分析,可以通过这些来源自动构成问题答案形式的信息,以指导基于知识的问答系统采用的资源密集型信息提取程序。 分析可以利用由贝叶斯或其他统计模型提供的系统生成的答案的最终质量的预测。 当与实用新型相结合时,这种预测可以为系统提供对发出给搜索引擎(或引擎)的查询数量的决定的能力,考虑到查询的成本和查询结果的期望值来提炼最终的 回答。 给定一个偏好模型,可以采用最高预期效用的信息提取动作。 以这种方式,可以将问题答案的准确性与信息提取和分析的成本进行平衡,以构成答案。
    • 32. 发明授权
    • Cost-benefit approach to automatically composing answers to questions by extracting information from large unstructured corpora
    • 通过从大型非结构化语料库中提取信息来自动构成问题答案的成本效益方法
    • US07454393B2
    • 2008-11-18
    • US10635274
    • 2003-08-06
    • Eric J. HorvitzDavid R. AzariSusan T. DumaisEric D. Brill
    • Eric J. HorvitzDavid R. AzariSusan T. DumaisEric D. Brill
    • G06F17/00G06F17/30G06N5/02
    • G06F17/30684G06F17/30687Y10S707/99933
    • The present invention relates to a system and methodology to facilitate extraction of information from a large unstructured corpora such as from the World Wide Web and/or other unstructured sources. Information in the form of answers to questions can be automatically composed from such sources via probabilistic models and cost-benefit analyses to guide resource-intensive information-extraction procedures employed by a knowledge-based question answering system. The analyses can leverage predictions of the ultimate quality of answers generated by the system provided by Bayesian or other statistical models. Such predictions, when coupled with a utility model can provide the system with the ability to make decisions about the number of queries issued to a search engine (or engines), given the cost of queries and the expected value of query results in refining an ultimate answer. Given a preference model, information extraction actions can be taken with the highest expected utility. In this manner, the accuracy of answers to questions can be balanced with the cost of information extraction and analysis to compose the answers.
    • 本发明涉及一种便利从诸如万维网和/或其他非结构化来源的大型非结构化语料库提取信息的系统和方法。 通过概率模型和成本效益分析,可以通过这些来源自动构成问题答案形式的信息,以指导基于知识的问答系统采用的资源密集型信息提取程序。 分析可以利用由贝叶斯或其他统计模型提供的系统生成的答案的最终质量的预测。 当与实用新型相结合时,这种预测可以为系统提供对发出给搜索引擎(或引擎)的查询数量的决定的能力,考虑到查询的成本和查询结果的期望值来提炼最终的 回答。 给定一个偏好模型,可以采用最高预期效用的信息提取动作。 以这种方式,可以将问题答案的准确性与信息提取和分析的成本进行平衡,以构成答案。
    • 37. 发明授权
    • Search system using user behavior data
    • 搜索系统使用用户行为数据
    • US07590619B2
    • 2009-09-15
    • US10805706
    • 2004-03-22
    • Oliver Hurst-HillerSusan T. Dumais
    • Oliver Hurst-HillerSusan T. Dumais
    • G06F7/00G06F17/30
    • G06F17/30867Y10S707/99931Y10S707/99932Y10S707/99933Y10S707/99935
    • Context-based user behavior data is collected from a search mechanism. This data includes, for a given query, user feedback (implicit and explicit) on the query and context information on the query. This information can be used, for example, to evaluate a search mechanism or to check a relevance model. This context-based user behavior data may include user information. In one embodiment, explicit feedback is requested from the user except when the user requests a pause in explicit feedback requests, or only periodically, in order to reach a target value for requests for explicit feedback. The explicit feedback may include feedback concerning results not visited, and concerning non-standard results. Implicit feedback will include particular data items such as requeries by a user.
    • 从搜索机制收集基于上下文的用户行为数据。 对于给定的查询,该数据包括查询上的用户反馈(隐式和显式)以及关于查询的上下文信息。 该信息可用于例如评估搜索机制或检查相关性模型。 该基于上下文的用户行为数据可以包括用户信息。 在一个实施例中,除了当用户请求显式反馈请求中的暂停或仅仅周期性地为了达到用于显式反馈的请求的目标值的情况下,请求来自用户的显式反馈。 明确的反馈可能包括关于未访问的结果以及非标准结果的反馈。 隐式反馈将包括特定数据项,如用户的请求。
    • 38. 发明授权
    • Automated satisfaction measurement for web search
    • 网页搜索的自动满意度测量
    • US07937340B2
    • 2011-05-03
    • US10806271
    • 2004-03-22
    • Oliver Hurst-HillerEric WatsonSusan T. Dumais
    • Oliver Hurst-HillerEric WatsonSusan T. Dumais
    • G06F15/18
    • G06F17/30867G06F7/00G06F15/18G06F17/30
    • Context-based user behavior data is collected from a search mechanism. This data includes, for a given query, user feedback (implicit and explicit) on the query and context information on the query. A predictive pattern is applied to the context-based user behavior data in order to produce predicted user satisfaction data. Data mining techniques may be used to create and improve one or more predictive patterns. Predicted user satisfaction data can be used to monitor or improve search mechanism performance, via a display reporting the performance or identification of any queries with a shared characteristic and sub-par user satisfaction. A dynamically-improving search mechanism uses the predicted user satisfaction data to improve the performance of the search mechanism.
    • 从搜索机制收集基于上下文的用户行为数据。 对于给定的查询,该数据包括查询上的用户反馈(隐式和显式)以及关于查询的上下文信息。 预测模式被应用于基于上下文的用户行为数据,以便产生预测的用户满意度数据。 数据挖掘技术可用于创建和改进一个或多个预测模式。 预测的用户满意度数据可以用于通过显示器报告具有共享特性和次标准用户满意度的任何查询的性能或标识来监视或改进搜索机制的性能。 动态改进的搜索机制使用预测的用户满意度数据来提高搜索机制的性能。
    • 39. 发明授权
    • Executive reporting
    • 行政报告
    • US08239227B2
    • 2012-08-07
    • US11874151
    • 2007-10-17
    • Eran MegiddoRichard J. WolfSusan T. DumaisJensen M. HarrisJoshua T. Goodman
    • Eran MegiddoRichard J. WolfSusan T. DumaisJensen M. HarrisJoshua T. Goodman
    • G06Q40/00
    • G06Q10/10G06Q10/06G06Q10/063114
    • Providing for generating an executive report of business or personal activity is described herein. By way of example, such executive report can identify a change and related cause with respect to a prior report. As a particular example, an inference engine can receive an activity report and reference prior reports to identify the change and related cause. A set of results containing such information can be provided to a synthesis component that can include and highlight such information in the executive report. In addition, additional sources of data can be referenced in order to include and/or customize the report to a particular individual, organization, culture, or the like. As described, aspects of the subject innovation can provide an executive report highlighting important aspects of data and tailoring those aspects to interests of one or more users.
    • 本文描述了提供生成业务或个人活动的执行报告。 作为例子,这样的执行报告可以针对先前的报告确定变更和相关原因。 作为特定示例,推理引擎可以接收活动报告并参考先前报告以识别变化和相关原因。 可以向综合组件提供包含此类信息的一组结果,其中可以在执行报告中包含和突出显示这些信息。 此外,可以引用额外的数据来源,以便将报告包括和/或定制到特定个人,组织,文化等。 如上所述,主题创新的方面可以提供强调数据的重要方面的执行报告,并将这些方面定制为一个或多个用户的兴趣。