会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明授权
    • Autonomous gyro scale factor and misalignment calibration
    • 自主陀螺仪比例因子和不对准校准
    • US06298288B1
    • 2001-10-02
    • US09212454
    • 1998-12-16
    • Rongsheng LiYeong-Wei A. WuGarry Didinsky
    • Rongsheng LiYeong-Wei A. WuGarry Didinsky
    • G06F770
    • G05D1/0883B64G1/288B64G1/36B64G1/361B64G1/363B64G1/365B64G2001/245
    • A system and method of estimating the attitude of a spacecraft is disclosed. A three-axis inertial-based estimate of spacecraft attitude is produced and is compared to a stellar-based estimate of spacecraft attitude. A Kalman filter having states associated with gyro scale factor and/or misalignment errors compares the stellar-based attitude estimate to the inertial-based estimate of attitude and apportions the total error into three time varying matrices. A first time varying matrix is associated with gyro scale factor and misalignment errors, a second time varying matrix is associated with gyro bias errors, and a third time varying matrix is associated with attitude errors. The time varying matrices are applied as corrective feedbacks to the inertial-based estimate of spacecraft attitude and are adaptively adjusted to minimize the error therein.
    • 公开了一种估计航天器姿态的系统和方法。 产生了基于三轴惯性的航天器姿态估计,并将其与航天器态度的恒星估计进行了比较。 具有与陀螺仪比例因子和/或未对准误差相关联的状态的卡尔曼滤波器将基于恒星的姿态估计与基于惯性的姿态估计进行比较,并将总误差分配给三个时变矩阵。 第一时变矩阵与陀螺仪比例因子和未对准误差相关联,第二时变矩阵与陀螺仪偏置误差相关联,并且第三时变矩阵与姿态误差相关联。 时变矩阵作为校正反馈应用于基于惯性的航天器姿态估计,并进行自适应调整以最小化其中的误差。
    • 32. 发明授权
    • Apparatus and method for temperature control of a cryocooler by
adjusting the compressor piston stroke amplitude
    • 通过调节压缩机活塞冲程振幅来控制制冷机的温度的装置和方法
    • US5535593A
    • 1996-07-16
    • US293621
    • 1994-08-22
    • Yeong-Wei A. WuMichael H. Kieffer
    • Yeong-Wei A. WuMichael H. Kieffer
    • F25B9/14G05B11/42F25B9/00F25B1/00
    • F25B9/14G05B11/42F25B2309/001
    • A temperature control apparatus and method for active control of a Stirling-cycle cryocooler cold finger tip temperature, by adjusting the cryocooler compressor piston stroke amplitude. In a control loop of the Stirling cryocooler, having a compressor in which the pistons are reciprocated by linear motors at fundamental frequency and the length of a stroke of the piston is varied as a direct function of cryocooler temperature, temperature is sensed at the cryocooler cold finger tip and the temperature signal is compared with a set temperature signal to produce a temperature error signal. This signal is input in a PID control law module which uses proportional, derivative, and integrated temperature error information to generate the required compressor piston stroke amplitude change for achieving the precision temperature control. The resulting signal is further processed in a distribution law module that distributes the desired piston stoke amplitude change to each compressor motor so that the force balance at the fundamental frequency is maintained.
    • 一种用于主动控制斯特林循环冷冻机冷指尖温度的温度控制装置和方法,通过调节低温冷冻机的压缩机活塞冲程振幅。 在斯特林低温制冷机的控制回路中,具有压缩机,其中活塞通过线性电动机在基本频率下往复运动,并且活塞的行程长度随着低温冷却器温度的直接函数而变化,在低温冷却器感测温度 指尖和温度信号与设定温度信号进行比较,产生温度误差信号。 该信号输入到PID控制定律模块中,该模块使用比例,微分和积分温度误差信息来产生所需的压缩机活塞行程幅度变化,以实现精密温度控制。 所得到的信号在分配规则模块中进一步处理,该分配规则模块将期望的活塞行程振幅变化分配给每个压缩机电动机,使得维持基频处的力平衡。
    • 38. 发明授权
    • Stirling-cycle cyrogenic cooler using adaptive feedforward vibration
control
    • 使用自适应前馈振动控制的斯特林循环系统冷却器
    • US5392607A
    • 1995-02-28
    • US91541
    • 1993-07-08
    • Yeong-Wei A. Wu
    • Yeong-Wei A. Wu
    • F16F15/02F25B9/14G05D19/02F25B9/00
    • F16F15/02F25B9/14G05D19/02F25B2309/1428F25B2500/13
    • A Stirling-cycle cryogenic cooler that employs a vibration control procedure based on adaptive feedforward principles. The vibration control procedure is particularly adapted for use as a spacecraft cryogenic cooler, and may be used to cool a detector array or other sensor located on the spacecraft. The vibration control procedure suppresses vibrational forces that occur during operation of the cooler. The cooler comprises an expander module and a compressor module. The expander and compressor modules employ separate motors that respectively drive an expander piston and a compressor piston, and a balancer piston is employed to dynamically balance the respective expander and compressor pistons. In the control procedure, current command signals are injected into a selected motor drive of either the compressor or expander module. The injected current command signals comprise higher-order harmonics with adaptively determined phases and amplitudes that provide for complete force cancellation in the cooler. The desired phases and amplitudes of the injected current command signals are estimated in real time using outputs of force sensors, such as load cells, coupled to the cooler housing that measure higher-order harmonic forces. In operation, when operational parameters of the cryogenic cooler have reached equilibrium, the harmonic content of its vibration force is very stable in time. Because of this unique characteristic, the phases and amplitudes of injected current command signal do not have to be determined quickly. Thus, the computation throughput required for the present control procedure are significantly reduced.
    • 采用基于自适应前馈原理的振动控制程序的斯特林循环低温冷却器。 振动控制程序特别适合用作航天器低温冷却器,并且可用于冷却位于航天器上的检测器阵列或其它传感器。 振动控制程序抑制在冷却器运行期间发生的振动。 冷却器包括膨胀器模块和压缩机模块。 膨胀机和压缩机模块采用分别驱动膨胀机活塞和压缩机活塞的单独的马达,并且使用平衡器活塞来动态平衡相应的膨胀机和压缩机活塞。 在控制过程中,电流指令信号被注入到压缩机或扩展器模块的选定的电机驱动器中。 注入的电流指令信号包括具有自适应确定的相位和幅度的高次谐波,其在冷却器中提供完全的力消除。 注射电流指令信号的期望相位和幅度使用耦合到测量高次谐波力的较冷外壳的力传感器(例如称重传感器)的输出实时估计。 在运行中,当低温冷却器的运行参数达到平衡时,其振动力的谐波含量在时间上非常稳定。 由于这种独特的特性,注入电流指令信号的相位和幅度不必快速确定。 因此,本控制程序所需的计算吞吐量显着降低。