会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明授权
    • Hybrid compressive/Nyquist sampling for enhanced sensing
    • 混合压缩/奈奎斯特采样用于增强感测
    • US08744200B1
    • 2014-06-03
    • US13464887
    • 2012-05-04
    • Yuri OwechkoSwarup Medasani
    • Yuri OwechkoSwarup Medasani
    • G06K9/54G06K9/60
    • H04N5/23245G06K9/00496H04N5/23229H04N19/136H04N19/194
    • Described is a knowledge-enhanced compressive imaging system. The system first initializes a compressive measurement basis set and a measurement matrix using task- and scene-specific prior knowledge. An image captured using the imaging mode of the dual-mode sensor is then sampled to extract context knowledge. The compressive measurement basis set and the measurement matrix are adapted using the extracted context knowledge and the prior knowledge. Task-relevant compressive measurements of the image are performed using the compressive measurement mode of the dual-mode sensor, and compressive reconstruction of the image is performed. Finally, a task and context optimized signal representation of the image is generated.
    • 描述了一种知识增强的压缩成像系统。 系统首先使用任务和场景特定的先验知识初始化压缩测量基础集和测量矩阵。 然后对使用双模传感器的成像模式捕获的图像进行采样以提取上下文知识。 使用提取的上下文知识和现有知识来调整压缩测量基础集和测量矩阵。 使用双模传感器的压缩测量模式执行图像的任务相关的压缩测量,并且执行图像的压缩重建。 最后,生成图像的任务和上下文优化的信号表示。
    • 22. 发明授权
    • Behavior recognition using cognitive swarms and fuzzy graphs
    • 使用认知群体和模糊图的行为识别
    • US08589315B2
    • 2013-11-19
    • US11800264
    • 2007-05-03
    • Swarup MedasaniYuri Owechko
    • Swarup MedasaniYuri Owechko
    • G06F15/18G06F15/00
    • G06K9/6292G06K9/00369G06K9/6229
    • Described is a behavior recognition system for detecting the behavior of objects in a scene. The system comprises a semantic object stream module for receiving a video stream having at least two frames and detecting objects in the video stream. Also included is a group organization module for utilizing the detected objects from the video stream to detect a behavior of the detected objects. The group organization module further comprises an object group stream module for spatially organizing the detected objects to have relative spatial relationships. The group organization module also comprises a group action stream module for modeling a temporal structure of the detected objects. The temporal structure is an action of the detected objects between the two frames, whereby through detecting, organizing and modeling actions of objects, a user can detect the behavior of the objects.
    • 描述了用于检测场景中的对象的行为的行为识别系统。 该系统包括语义对象流模块,用于接收具有至少两个帧的视频流并检测视频流中的对象。 还包括用于利用来自视频流的检测对象的组织组织模块来检测检测到的对象的行为。 组织模块还包括用于空间组织所检测到的对象以具有相对空间关系的对象组流模块。 组织模块还包括用于对所检测到的对象的时间结构建模的组动作流模块。 时间结构是两帧之间检测到的对象的动作,由此通过检测,组织和建模对象的动作,用户可以检测对象的行为。
    • 23. 发明授权
    • System for object recognition in colorized point clouds
    • 彩色点云中物体识别系统
    • US08488877B1
    • 2013-07-16
    • US12592836
    • 2009-12-02
    • Yuri OwechkoSwarup MedasaniRonald T. AzumaJim Nelson
    • Yuri OwechkoSwarup MedasaniRonald T. AzumaJim Nelson
    • G06K9/00
    • G06K9/00201G06K9/00704
    • Described is a system for object recognition in colorized point clouds. The system includes an implicit geometry engine that is configured to receive three-dimensional (3D) colorized cloud point data regarding a 3D object of interest and to convert the cloud point data into implicit representations. The engine also generates geometric features. A geometric grammar block is included to generate object cues and recognize geometric objects using geometric tokens and grammars based on object taxonomy. A visual attention cueing block is included to generate object cues based on 3D geometric properties. Finally, an object recognition block is included to perform a local search for objects using cues from the cueing block and the geometric grammar block and to classify the 3D object of interest as a particular object upon a classifier reaching a predetermined threshold.
    • 描述了在彩色点云中的对象识别系统。 该系统包括隐式几何引擎,其被配置为接收关于感兴趣的3D对象的三维(3D)着色浊点数据,并将该浊点数据转换为隐含表示。 引擎还生成几何特征。 包含几何语法块以生成对象提示,并使用基于对象分类法的几何令牌和语法来识别几何对象。 包括视觉注意提示块,以根据3D几何属性生成对象提示。 最后,包括对象识别块,以使用来自提示块和几何语法块的提示来执行对象的本地搜索,并且在分类器达到预定阈值时将感兴趣的3D对象分类为特定对象。
    • 25. 发明授权
    • Method and system for directed area search using cognitive swarm vision and cognitive Bayesian reasoning
    • 使用认知群体视觉和认知贝叶斯推理的定向区域搜索的方法和系统
    • US08213709B1
    • 2012-07-03
    • US12590110
    • 2009-11-03
    • Swarup MedasaniYuri OwechkoTsai-Ching LuDeepak KhoslaDavid L. Allen
    • Swarup MedasaniYuri OwechkoTsai-Ching LuDeepak KhoslaDavid L. Allen
    • G06K9/62
    • G06K9/6278G06K9/00671G06K9/6263G06N7/005
    • A method and system for a directed area search using cognitive swarm vision and cognitive Bayesian reasoning is disclosed. The system comprises a domain knowledge database, a top-down reasoning module, and a bottom-up module. The domain knowledge database is configured to store Bayesian network models comprising visual features and observables associated with various sets of entities. The top-down module is configured to receive a search goal, generate a plan of action using Bayesian network models, and partition the plan into a set of tasks/observables to be located in the imagery. The bottom-up module is configured to select relevant feature/attention models for the observables, and search the visual imagery using a cognitive swarm for the at least one observable. The system further provides for operator feedback and updating of the domain knowledge database to perform better future searches.
    • 公开了一种使用认知群体视觉和认知贝叶斯推理的定向区域搜索的方法和系统。 该系统包括域知识数据库,自上而下推理模块和自下而上模块。 域知识数据库被配置为存储包括与各组实体相关联的视觉特征和可观察性的贝叶斯网络模型。 自顶向下模块被配置为接收搜索目标,使用贝叶斯网络模型生成行动计划,并将计划分成一组要在图像中的任务/可观察值。 自下而上模块被配置为选择可观察的相关特征/关注模型,并且使用用于至少一个可观察的认知群搜索视觉图像。 该系统进一步提供操作者反馈和更新领域知识数据库以执行更好的未来搜索。
    • 26. 发明授权
    • Network optimization system implementing distributed particle swarm optimization
    • 网络优化系统实现分布式粒子群优化
    • US08018874B1
    • 2011-09-13
    • US12387752
    • 2009-05-06
    • Yuri Owechko
    • Yuri Owechko
    • H04L12/28
    • H04L41/0823H04W4/08H04W28/18
    • Described is a distributed network optimization system implementing distributed particle swarm optimization, which allows multiple nodes to cooperate in searching efficiently for a set of parameter values that optimizes overall network performance. The system comprises a multi-dimensional network parameter space with software agents configured to operate as a cooperative swarm to locate an objective function optima. The software agents are individually distributed across multiple nodes in the network, and each node processes a portion of each software agent to obtain information regarding the local performance of the software agent. A global measure of network performance is then computed based on sharing of local performance information between nodes, which each node uses to adjust its parameters accordingly. In this manner, the global utility of the network can be optimized using local processing only. Also described is a method of utilizing the system.
    • 描述了实现分布式粒子群优化的分布式网络优化系统,其允许多个节点协作以有效地搜索一组优化整体网络性能的参数值。 该系统包括多维网络参数空间,其中软件代理被配置为作为协作群进行操作以定位目标函数最优。 软件代理单独地分布在网络中的多个节点上,并且每个节点处理每个软件代理的一部分以获得关于软件代理的本地性能的信息。 然后基于节点之间的本地性能信息的共享来计算网络性能的全局度量,每个节点用于相应地调整其参数。 以这种方式,可以仅使用本地处理来优化网络的全局效用。 还描述了利用该系统的方法。
    • 27. 发明申请
    • Vision System for Monitoring Humans in Dynamic Environments
    • 动态环境监测人的视觉系统
    • US20110050878A1
    • 2011-03-03
    • US12549425
    • 2009-08-28
    • James W. WellsRoland J. MenassaCharles W. Wampler, IISwarup MedasaniYuri OwechkoKyungnam KimYang Chen
    • James W. WellsRoland J. MenassaCharles W. Wampler, IISwarup MedasaniYuri OwechkoKyungnam KimYang Chen
    • H04N7/18
    • H04N7/181
    • A safety monitoring system for a workspace area. The workspace area related to a region having automated moveable equipment. A plurality of vision-based imaging devices capturing time-synchronized image data of the workspace area. Each vision-based imaging device repeatedly capturing a time synchronized image of the workspace area from a respective viewpoint that is substantially different from the other respective vision-based imaging devices. A visual processing unit for analyzing the time-synchronized image data. The visual processing unit processes the captured image data for identifying a human from a non-human object within the workspace area. The visual processing unit further determining potential interactions between a human and the automated moveable equipment. The visual processing unit further generating control signals for enabling dynamic reconfiguration of the automated moveable equipment based on the potential interactions between the human and the automated moveable equipment in the workspace area.
    • 用于工作区的安全监控系统。 与具有自动移动设备的区域相关的工作空间区域。 多个基于视觉的成像设备捕获工作区域的时间同步图像数据。 每个基于视觉的成像设备从与其他各自的基于视觉的成像设备基本上不同的相应视点重复地捕获工作区域的时间同步图像。 一种用于分析时间同步图像数据的可视处理单元。 视觉处理单元从工作区域内的非人物对象处理用于识别人的拍摄图像数据。 视觉处理单元进一步确定人与自动移动设备之间的潜在交互作用。 视觉处理单元还基于人与工作空间区域中的自动移动设备之间的潜在交互,进一步产生用于实现自动移动设备的动态重新配置的控制信号。
    • 28. 发明授权
    • Active learning system for object fingerprinting
    • 主体学习系统用于对象指纹识别
    • US07587064B2
    • 2009-09-08
    • US11051860
    • 2005-02-03
    • Yuri OwechkoSwarup MedasaniNarayan Srinivasa
    • Yuri OwechkoSwarup MedasaniNarayan Srinivasa
    • G06K9/00G06K9/62
    • G06K9/469G06K9/6254
    • Described is an active learning system for fingerprinting an object identified in an image frame. The active learning system comprises a flow-based object segmentation module for segmenting a potential object candidate from a video sequence, a fixed-basis function decomposition module using Haar wavelets to extract a relevant feature set from the potential object candidate, a static classifier for initial classification of the potential object candidate, an incremental learning module for predicting a general class of the potential object candidate, an oriented localized filter module to extract features from the potential object candidate, and a learning-feature graph-fingerprinting module configured to receive the features and build a fingerprint of the object for tracking the object.
    • 描述了一种用于对在图像帧中识别的对象进行指纹识别的主动学习系统。 主动学习系统包括:基于流的对象分割模块,用于从视频序列分割潜在对象候选者;使用哈尔小波的固定基函数分解模块从潜在对象候选者提取相关特征集;初始化的静态分类器 潜在对象候选者的分类,用于预测潜在候选对象的一般类别的增量学习模块,从潜在对象候选者提取特征的定向局部化过滤器模块,以及被配置为接收特征的学习特征图指纹模块 并构建对象的指纹以跟踪对象。
    • 30. 发明申请
    • Behavior recognition using cognitive swarms and fuzzy graphs
    • 使用认知群体和模糊图的行为识别
    • US20070263900A1
    • 2007-11-15
    • US11800264
    • 2007-05-03
    • Swarup MedasaniYuri Owechko
    • Swarup MedasaniYuri Owechko
    • G06K9/00
    • G06K9/6292G06K9/00369G06K9/6229
    • Described is a behavior recognition system for detecting the behavior of objects in a scene. The system comprises a semantic object stream module for receiving a video stream having at least two frames and detecting objects in the video stream. Also included is a group organization module for utilizing the detected objects from the video stream to detect a behavior of the detected objects. The group organization module further comprises an object group stream module for spatially organizing the detected objects to have relative spatial relationships. The group organization module also comprises a group action stream module for modeling a temporal structure of the detected objects. The temporal structure is an action of the detected objects between the two frames, whereby through detecting, organizing and modeling actions of objects, a user can detect the behavior of the objects.
    • 描述了用于检测场景中的对象的行为的行为识别系统。 该系统包括语义对象流模块,用于接收具有至少两个帧的视频流并检测视频流中的对象。 还包括用于利用来自视频流的检测对象的组织组织模块来检测检测到的对象的行为。 组织模块还包括用于空间组织所检测到的对象以具有相对空间关系的对象组流模块。 组织模块还包括用于对所检测到的对象的时间结构建模的组动作流模块。 时间结构是两帧之间检测到的对象的动作,由此通过检测,组织和建模对象的动作,用户可以检测对象的行为。