会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 23. 发明授权
    • Clustering data including those with asymmetric relationships
    • 聚类数据,包括具有不对称关系的数据
    • US06925460B2
    • 2005-08-02
    • US09815616
    • 2001-03-23
    • Krishna KummamuruRaghuram KrishnapuramPradeep Kumar Dubey
    • Krishna KummamuruRaghuram KrishnapuramPradeep Kumar Dubey
    • G06F7/00G06F17/30
    • G06F17/30719G06F17/3071Y10S707/99933Y10S707/99935
    • The present invention relates to a method, system and computer program product for clustering data points and its application to text summarization, customer profiling for web personalization and product cataloging.The method for clustering data points with defined quantified relationships between them comprises the steps of obtaining lead value for each data point either by deriving from said quantified relationships or as given input, ranking each data point in a lead value sequence list in descending order of lead value, assigning the first data point in said lead value sequence list as the leader of the first cluster, and considering each subsequent data point in said lead value sequence list as a leader of a new cluster if its relationship with the leaders of each of the previous clusters is less than a defined threshold value or as a member of one or more clusters where its relationship with the cluster leader is more than or equal to said threshold value. The said relationships between data points are symmetric or asymmetric. Similarly, system and computer program product have also been claimed.
    • 本发明涉及用于聚类数据点的方法,系统和计算机程序产品及其应用于文本摘要,用于web个性化和产品编目的客户分析。 用于对其中具有定义的量化关系的数据点进行聚类的方法包括以下步骤:通过从所述量化关系导出或作为给定输入来获取每个数据点的引导值,以引导值序列表中的每个数据点按铅的降序排列 将所述引导值序列列表中的第一数据点分配为第一簇的引导符,并且如果其与每个的引导者的关系,则将所述引导值序列列表中的每个后续数据点视为新簇的引导者 先前的簇小于定义的阈值,或作为其与簇首的关系大于或等于所述阈值的一个或多个簇的成员。 数据点之间的关系是对称的或不对称的。 类似地,系统和计算机程序产品也被要求。
    • 24. 发明授权
    • System and computer program product for deriving intelligence from activity logs
    • 用于从活动日志导出智能的系统和计算机程序产品
    • US09495275B2
    • 2016-11-15
    • US12111356
    • 2008-04-29
    • Prasad M. DeshpandeRaghuram KrishnapuramDebapriyo MajumdarDeepak S. Padmanabhan
    • Prasad M. DeshpandeRaghuram KrishnapuramDebapriyo MajumdarDeepak S. Padmanabhan
    • G06F11/34
    • G06F11/3476
    • Techniques for segregating one or more logs of at least one multitasking user to derive at least one behavioral pattern of the at least one multitasking user are provided. The techniques include obtaining at least one of at least one action log, configuration information, domain knowledge, at least one task history and open task repository information, correlating the at least one of at least one action log, configuration information, domain knowledge, at least one task history and open task repository information to determine a task associated with each of one or more actions and segregate the one or more logs based on the one or more actions, and using the one or more logs that have been segregated to derive at least one behavioral pattern of the at least one multitasking user. Techniques are also provided for deriving intelligence from at least one activity log of at least one multitasking user to provide information to the at least one user.
    • 提供了用于隔离至少一个多任务用户的一个或多个日志以导出所述至少一个多任务用户的至少一个行为模式的技术。 这些技术包括获得至少一个动作日志,配置信息,域知识,至少一个任务历史和开放任务存储库信息中的至少一个,将至少一个动作日志,配置信息,域知识中的至少一个与 至少一个任务历史和开放任务存储库信息,以确定与一个或多个动作中的每一个相关联的任务,并且基于所述一个或多个动作来隔离所述一个或多个日志,并且使用已经被隔离导出的一个或多个日志 所述至少一个多任务用户的至少一个行为模式。 还提供了用于从至少一个多任务用户的至少一个活动日志导出智能以向至少一个用户提供信息的技术。
    • 28. 发明申请
    • SYSTEM AND COMPUTER PROGRAM PRODUCT FOR DERIVING INTELLIGENCE FROM ACTIVITY LOGS
    • 系统和计算机程序产品从活动日志导入智能
    • US20090271800A1
    • 2009-10-29
    • US12111356
    • 2008-04-29
    • Prasad M. DeshpandeRaghuram KrishnapuramDebapriyo MajumdarDeepak S. Padmanabhan
    • Prasad M. DeshpandeRaghuram KrishnapuramDebapriyo MajumdarDeepak S. Padmanabhan
    • G06F9/46
    • G06F11/3476
    • Techniques for segregating one or more logs of at least one multitasking user to derive at least one behavioral pattern of the at least one multitasking user are provided. The techniques include obtaining at least one of at least one action log, configuration information, domain knowledge, at least one task history and open task repository information, correlating the at least one of at least one action log, configuration information, domain knowledge, at least one task history and open task repository information to determine a task associated with each of one or more actions and segregate the one or more logs based on the one or more actions, and using the one or more logs that have been segregated to derive at least one behavioral pattern of the at least one multitasking user. Techniques are also provided for deriving intelligence from at least one activity log of at least one multitasking user to provide information to the at least one user.
    • 提供了用于隔离至少一个多任务用户的一个或多个日志以导出所述至少一个多任务用户的至少一个行为模式的技术。 这些技术包括获得至少一个动作日志,配置信息,域知识,至少一个任务历史和开放任务存储库信息中的至少一个,将至少一个动作日志,配置信息,域知识中的至少一个与 至少一个任务历史和开放任务存储库信息,以确定与一个或多个动作中的每一个相关联的任务,并且基于所述一个或多个动作来隔离所述一个或多个日志,并且使用已经被隔离导出的一个或多个日志 所述至少一个多任务用户的至少一个行为模式。 还提供了用于从至少一个多任务用户的至少一个活动日志导出智能以向至少一个用户提供信息的技术。
    • 29. 发明申请
    • METHOD AND SYSTEM FOR CATEGORIZING TOPIC DATA WITH CHANGING SUBTOPICS
    • 用于分类主题数据与更改子句的方法和系统
    • US20090150436A1
    • 2009-06-11
    • US11953198
    • 2007-12-10
    • Shantanu GodboleRaghuram KrishnapuramShourya Roy
    • Shantanu GodboleRaghuram KrishnapuramShourya Roy
    • G06F17/30
    • G06F16/355
    • The embodiments of the invention provide a method for the automatic identification of changing subtopics within topics. The method begins by receiving customer satisfaction data having unstructured data objects. Next, the data objects are automatically categorized into pre-defined topics, wherein the pre-defined topics do not change throughout the customer satisfaction analysis. The pre-defined topics can be automatically defined based on a history of customer satisfaction data. Following this, a clustering analysis is automatically performed to identify subtopics of the data objects within the pre-defined topics. The subtopics are more specific than the pre-defined topics, and the subtopics can change. Further, the clustering analysis can include extracting features from the data objects and grouping the features into the subtopics. Each of the subtopics includes features having a predetermined degree of similarity.
    • 本发明的实施例提供了一种用于在主题内自动识别不断变化的子主题的方法。 该方法开始于接收具有非结构化数据对象的客户满意度数据。 接下来,数据对象被自动分类为预定义的主题,其中预定义的主题在整个客户满意度分析中不改变。 可以根据客户满意度数据的历史自动定义预定义的主题。 此后,将自动执行聚类分析,以确定预定义主题内的数据对象的子主题。 子主题比预定义的主题更具体,子主题可以更改。 此外,聚类分析可以包括从数据对象中提取特征并将特征分组到子主题中。 每个子主题包括具有预定相似度的特征。
    • 30. 发明授权
    • Methods, apparatus and computer programs for characterizing web resources
    • 用于表征网络资源的方法,设备和计算机程序
    • US07516397B2
    • 2009-04-07
    • US10901275
    • 2004-07-28
    • Sachindra JoshiRaghuram KrishnapuramShourya Roy
    • Sachindra JoshiRaghuram KrishnapuramShourya Roy
    • G06F17/00
    • G06F17/30864G06F17/30896
    • Methods, apparatus and computer programs are provided for characterizing Web-based information resources based on their interactions. A Web-based information resource is a single Web document or a collection of related Web documents. Unlike simple text documents, Web documents contain hyperlinks and other HTML tags. Different types of interactions, including inbound hyperlinks, outbound hyperlinks and internal links associated with a Web-based information resource, are used to characterize the Web-based information resource. A DOM tree representing the tag structure of a Web-based information resource is used to identify text items likely to be useful as context for a hyperlink anchor text, and the anchor text is combined with the context to generate a representation. The representation of Web-based information resources based on interactions can be used for clustering and classification, and in Web mining applications such as query disambiguation and automatic taxonomy generation.
    • 提供方法,装置和计算机程序,用于基于它们的相互作用来表征基于Web的信息资源。 基于Web的信息资源是单个Web文档或相关Web文档的集合。 与简单的文本文档不同,Web文档包含超链接和其他HTML标签。 使用不同类型的交互,包括入站超链接,出站超链接和与基于Web的信息资源相关联的内部链接,用于表征基于Web的信息资源。 代表基于Web的信息资源的标签结构的DOM树用于识别可能作为超链接锚文本的上下文有用的文本项,并且锚文本与上下文组合以生成表示。 基于互动的基于Web的信息资源的表示可以用于聚类和分类,以及Web挖掘应用程序,如查询消歧和自动分类法生成。