会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明授权
    • Image compounding based on independent noise constraint
    • 基于独立噪声约束的图像复合
    • US07508968B2
    • 2009-03-24
    • US11229106
    • 2005-09-16
    • Yunqiang ChenHongcheng WangTong FangJason Jenn-Kwei Tyan
    • Yunqiang ChenHongcheng WangTong FangJason Jenn-Kwei Tyan
    • G06K9/00G06K9/40G06K9/36
    • G06T5/002G06T5/50G06T2207/10081G06T2207/10132G06T2207/20076G06T2207/20192G06T2207/30004
    • A method and system for improving image quality by compounding a plurality of images to mitigate the effects of image noise. The method utilizes the independency between noise components for multiple image compounding. An effective measurement is designed to regularize the independency between noise in a traditional generative model based filtering framework, thereby enabling a more robust algorithmic solution to inaccurate signal/noise modeling. The method generally comprises selecting a plurality of images, calculating the residual error on each image; calculating the noise likelihood of each image, calculating the signal likelihood of the image, performing an independence analysis to regularize an independence constraint between the residual errors of the images, and summing the signal likelihood, noise likelihood and pairwise independency to approximate the joint independency between the residual errors.
    • 一种用于通过复合多个图像来减轻图像噪声的影响来提高图像质量的方法和系统。 该方法利用多重图像复合的噪声分量之间的独立性。 设计了一种有效的测量方法来规范传统的基于生成模型的滤波框架中的噪声之间的独立性,从而实现了更为鲁棒的算法解决方案,使信号/噪声建模不准确。 该方法通常包括选择多个图像,计算每个图像上的残差; 计算每个图像的噪声可能性,计算图像的信号可能性,执行独立性分析以使图像的残差误差之间的独立性约束正规化,并且将信号似然性,噪声似然性和成对独立性相加以近似于 剩余错误。
    • 25. 发明授权
    • Layer reconstruction from dual-energy image pairs
    • 从双能图像对重建层
    • US08005288B2
    • 2011-08-23
    • US12101487
    • 2008-04-11
    • Yunqiang ChenTong Fang
    • Yunqiang ChenTong Fang
    • G06K9/00G06K9/36G06K9/32
    • G06T5/50G06T5/005G06T7/33G06T2207/10116G06T2207/10144G06T2207/30004
    • A system and method for layer reconstruction from dual-energy image pairs are provided, the method including: receiving a pair of dual-energy images, one having a relatively high energy dose and the other having a relatively low energy dose; ascertaining that a first relatively motionless layer is substantially aligned between the high and low dose images; computing a preliminary image of a second layer that has non-rigid motion relative to the first layer; detecting the relative motion of the second layer relative to the first layer; generating a mask in accordance with the detected motion; filling the motion area corresponding to the mask with gradients of the high-dose image; removing the first layer; and inpainting the motion area.
    • 提供了一种用于从双能量图像对进行层重构的系统和方法,所述方法包括:接收一对双能量图像,一个具有相对较高的能量剂量,另一个具有相对低的能量剂量; 确定第一相对静止层基本上在高剂量图像和低剂量图像之间对准; 计算相对于第一层具有非刚性运动的第二层的初步图像; 检测第二层相对于第一层的相对运动; 根据检测到的运动产生掩模; 用高剂量图像的梯度填充对应于掩模的运动区域; 去除第一层; 并修复运动区域。
    • 28. 发明申请
    • Method and system for soft tissue image reconstruction in gradient domain
    • 梯度域软组织图像重建方法与系统
    • US20090116722A1
    • 2009-05-07
    • US12287551
    • 2008-10-10
    • Yunqiang ChenTong Fang
    • Yunqiang ChenTong Fang
    • H05G1/64G06K9/00
    • G06T11/008G06T5/005G06T2207/20016
    • A method and system for soft tissue image reconstruction for dual x-ray imaging is disclosed. A multigrid PDE solver is used for solving a Poisson equation for soft tissue image reconstruction based on a soft tissue gradient field extracted from dual energy x-ray images. The divergence of the soft tissue gradient field is downsampled to a coarsest resolution level, and a soft tissue image is generated based on the divergence of the soft tissue gradient field at the coarsest level. The soft tissue image is interpolated to a next finest resolution level, and refined by at least one coarse grid correction cycle at the current resolution level. The coarse grid correction cycle calculates a defect based on the current soft tissue image, downsamples the defect to the coarsest level, calculates a correction based on the defect at the coarsest level, and upsamples the correction to the current resolution level to refine the current soft tissue image. The interpolation and refinement of the soft tissue image is repeated until the soft tissue image is refined at the finest resolution level.
    • 公开了一种用于双重X射线成像的软组织图像重建的方法和系统。 基于从双能量x射线图像提取的软组织梯度场,多重PDE求解器用于求解软组织图像重建的泊松方程。 软组织梯度场的发散度被下采样到最粗分辨率水平,并且基于最粗糙度级别的软组织梯度场的发散度产生软组织图像。 将软组织图像插值到下一个最佳分辨率级别,并通过至少一个粗网格校正周期以当前分辨率级别进行细化。 粗网格校正周期基于当前软组织图像计算缺陷,将缺陷下采样到最粗水平,基于最粗糙级别的缺陷计算校正,并将校正上采样到当前分辨率水平以细化当前软 组织图像 重复软组织图像的插值和细化,直到软组织图像以最好的分辨率水平被精炼。