会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明授权
    • Thermally induced reflectivity switch for laser thermal processing
    • 用于激光热处理的热感应反射开关
    • US06495390B2
    • 2002-12-17
    • US09940102
    • 2001-08-27
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • H01L2100
    • B23K26/18B23K26/009H01L21/268H01L21/324
    • A method, apparatus and system for controlling the amount of heat transferred to a process region (30) of a workpiece (W) from exposure with laser radiation (10) using a thermally induced reflectivity switch layer (60). The apparatus of the invention is a film stack (6) having an absorber layer (50) deposited atop the workpiece, such as a silicon wafer. A portion of the absorber layer covers the process region. The absorber layer absorbs laser radiation and converts the absorbed radiation into heat. A reflective switch layer (60) is deposited atop the absorber layer. The reflective switch layer may comprise one or more thin film layers, and preferably includes a thermal insulator layer and a transition layer. The portion of the reflective switch layer covering the process region has a temperature that corresponds to the temperature of the process region. The reflectivity of the reflectivity switch layer changes from a low reflectivity state to a high reflectivity state at a critical temperature so as to limit the amount of radiation absorbed by the absorber layer by reflecting the incident radiation. This, in turn, limits the amount of heat transferred to the process region from the absorber layer.
    • 一种用于通过使用热诱导反射率开关层(60)从激光辐射(10)曝光来控制传送到工件(W)的处理区域(30)的热量的方法,装置和系统。 本发明的装置是具有沉积在工件上方的诸如硅晶片的吸收层(50)的薄膜叠层(6)。 吸收层的一部分覆盖工艺区域。 吸收层吸收激光辐射并将吸收的辐射转化成热。 反射开关层(60)沉积在吸收层顶部。 反射开关层可以包括一个或多个薄膜层,并且优选地包括热绝缘体层和过渡层。 覆盖处理区域的反射开关层的部分具有对应于处理区域的温度的温度。 反射率开关层的反射率在临界温度从低反射率状态变为高反射率状态,以通过反射入射辐射来限制吸收层吸收的辐射量。 这反过来限制了从吸收层传递到处理区域的热量。
    • 23. 发明授权
    • Gas immersion laser annealing method suitable for use in the fabrication
of reduced-dimension integrated circuits
    • 气浸式激光退火方法适用于制造尺寸较小的集成电路
    • US5956603A
    • 1999-09-21
    • US141842
    • 1998-08-27
    • Somit TalwarKurt Weiner
    • Somit TalwarKurt Weiner
    • H01L29/78H01L21/20H01L21/265H01L21/268H01L21/336H01L21/8238H01L27/092
    • H01L21/268H01L21/26513H01L21/26506H01L21/8238H01L29/6659Y10S438/952
    • A method for fabricating a plurality of shallow-junction metal oxide semiconductor field-effect transistors (MOSFETs) on a selected area of a silicon wafer, in the case in which the MOSFETs are spaced from one another by substantially transparent isolation elements. The method includes the step of flooding the entire selected area with laser radiation that is intended to effect the heating to a desired threshold temperature of only the selected depth of a surface layer of silicon that has been previously amorphized to this selected depth and then doped. This threshold temperature is sufficient to melt amorphized silicon but is insufficient to melt crystalline silicon. However, should the laser radiation be directly incident on both the substantially transparent isolation elements and the silicon surface, a variable portion of the energy of the incident radiation traveling through the substantially transparent isolation elements would be transferred to the silicon surfaces in contact with the isolation elements depending on the depth of the isolation elements thereby causing unpredictable additional heating of the silicon which would result in an unwanted shift in the fluence required to reach the melt threshold temperature in those silicon regions which reach the melt threshold temperature. To prevent this, a top layer stack of a dielectric and a highly radiation-absorbent material (e.g., silicon dioxide and tantalum nitride) is deposited over the selected area prior to the flooding of the entire selected area with laser radiation taking place. After, the melted silicon has cooled and recrystallized, the top layer of highly radiation-absorbent material is stripped.
    • 在通过基本上透明的隔离元件彼此隔开的情况下,在硅晶片的选定区域上制造多个浅结金属氧化物半导体场效应晶体管(MOSFET)的方法。 该方法包括用激光辐射淹没整个所选择的区域的步骤,该激光辐射旨在将加热至仅被预先非晶化到该选定深度的硅的表面层的选定深度的所需阈值温度,然后掺杂。 该阈值温度足以熔化非晶硅,但不足以熔化晶体硅。 然而,如果激光辐射直接入射到基本上透明的隔离元件和硅表面上,则穿过基本上透明的隔离元件的入射辐射的能量的可变部分将被转移到与隔离物接触的硅表面 元素取决于隔离元件的深度,从而引起硅的不可预测的额外加热,这将导致在达到熔融阈值温度的那些硅区域中达到熔体阈值温度所需的注量的不希望的变化。 为了防止这种情况,在发生激光辐射的整个选定区域的溢流之前,在所选择的区域上沉积电介质和高辐射吸收材料(例如二氧化硅和氮化钽)的顶层堆叠。 之后,熔融的硅已经冷却并重结晶,剥离高度辐射吸收材料的顶层。
    • 27. 发明授权
    • Method for semiconductor gate doping
    • 半导体栅极掺杂方法
    • US06777317B2
    • 2004-08-17
    • US09941817
    • 2001-08-29
    • Cindy SeibelSomit Talwar
    • Cindy SeibelSomit Talwar
    • H01L21336
    • H01L21/02686H01L21/02532H01L21/2026H01L21/268H01L21/28035H01L21/823842H01L29/4916
    • A method of forming a doped polycrystalline silicon gate in a Metal Oxide Semiconductor (MOS) device. The method includes forming first an insulation layer on a top surface of a crystalline silicon substrate. Next, an amorphous silicon layer is formed on top of and in contact with the insulation layer and then a dopant is introduced in a top surface layer of the amorphous silicon layer. The top surface of the amorphous silicon layer is irradiated with a laser beam and the heat of the radiation causes the top surface layer to melt and initiates explosive recrystallization (XRC) of the amorphous silicon layer. The XRC process transforms the amorphous silicon layer into a polycrystalline silicon gate and distributes the dopant homogeneously throughout the polycrystalline gate.
    • 一种在金属氧化物半导体(MOS)器件中形成掺杂多晶硅栅极的方法。 该方法包括在晶体硅衬底的顶表面上首先形成绝缘层。 接下来,在绝缘层之上形成非晶硅层,并与绝缘层接触,然后将掺杂剂引入非晶硅层的顶表面层。 用激光束照射非晶硅层的顶表面,并且辐射热使顶表面层熔化并引发非晶硅层的爆炸重结晶(XRC)。 XRC工艺将非晶硅层转化为多晶硅栅极,并将掺杂剂均匀分布在整个多晶栅极中。
    • 28. 发明授权
    • Laser thermal process for fabricating field-effect transistors
    • 用于制造场效应晶体管的激光热处理
    • US06365476B1
    • 2002-04-02
    • US09698670
    • 2000-10-27
    • Somit TalwarYun Wang
    • Somit TalwarYun Wang
    • H01L21336
    • H01L29/6653H01L21/02675H01L21/2026H01L21/268H01L29/6659
    • A simplified and cost reduced process for fabricating a field-effect transistor semiconductor device (104) using laser radiation is disclosed. The process includes the step of forming removable first dielectric spacers (116R) on the sides (120a, 120b) of the gate (120). Dopants are implanted into the substrate (100) and the substrate is annealed to form an active deep source (108) and an active deep drain (110). The sidewall spacers are removed, and then a blanket pre-amorphization implant is performed to form source and drain amorphized regions (200a, 200b) that include respective extension regions (118a, 118b) that extend up to the gate. A layer of material (210 is deposited over the source and drain extensions, the layer being opaque to a select wavelength of laser radiation (220). The layer is then irradiated with laser radiation of the select wavelength so as to selectively melt the amorphized source and drain extensions, but not the underlying substrate. This causes dopants in the deep source to diffuse into the molten source extension, and dopants in the deep drain to diffuse into the molten drain extension. Upon recrystallization of the extensions, the layer of material is removed, and the FET device is completed using known processing techniques. The above process eliminates the lithography and ion implantation steps normally required for source and drain extension formation, and thereby reduces the manufacturing costs of field-effect transistors.
    • 公开了一种使用激光辐射制造场效应晶体管半导体器件(104)的简化且成本降低的工艺。 该方法包括在栅极(120)的侧面(120a,120b)上形成可移除的第一介电间隔物(116R)的步骤。 将掺杂剂注入到衬底(100)中,并且将衬底退火以形成有源深源(108)和有源深漏极(110)。 去除侧壁间隔物,然后执行毯状预非晶化注入以形成源极和漏极非晶化区域(200a,200b),其包括延伸到栅极的相应延伸区域(118a,118b)。 一层材料(210沉积在源极和漏极延伸部分上,该层对激光辐射的选择波长(220)是不透明的,然后用选择波长的激光辐射照射该层,以选择性地熔化非晶化源 和漏极延伸部分,而不是下面的衬底,这使得深源中的掺杂剂扩散到熔融源延伸中,并且深漏极中的掺杂剂扩散到熔融排放延伸部分中。在延伸部分重结晶时, 去除,并且使用已知的处理技术完成FET器件。上述处理消除了源极和漏极延伸形成通常需要的光刻和离子注入步骤,从而降低了场效应晶体管的制造成本。
    • 29. 发明授权
    • Method for forming silicide regions on an integrated device
    • 在集成器件上形成硅化物区域的方法
    • US06297135B1
    • 2001-10-02
    • US09158265
    • 1998-09-21
    • Somit TalwarGaurav VermaKarl-Josef KramerKurt Weiner
    • Somit TalwarGaurav VermaKarl-Josef KramerKurt Weiner
    • H01L2122
    • H01L29/66507H01L21/26506H01L21/26513H01L21/268H01L21/28052H01L21/28518H01L21/32053H01L21/76202H01L21/76895H01L29/665H01L29/66545H01L29/66575H01L2924/0002H01L2924/00
    • The invented method can be used to form silicide contacts to an integrated MISFET device. Field isolation layers are formed to electrically isolate a portion of the silicon substrate, and gate, source and drain regions are formed therein. A polysilicon runner(s) that makes an electrical connection to the integrated device, is formed on the isolation layers. The structure is subjected to ion implantation to amorphized portions of the silicon gate, source, drain and runner regions. A metal layer is formed in contact with the amorphized regions, and the metal layer overlying the active region of the integrated device is selectively irradiated using a mask. The light melts part of the gate, and amorphized source and drain regions while the remaining portions of the integrated device and substrate remain in their solid phases. Metal diffuses into the melted gate, source and drain regions which are thus converted into respective silicide alloy regions. Preferably, during selective irradiation, a portion of the gate region is not exposed to light so that it is relatively cool and acts as a heat sink to draw heat away from the irradiated portion of the gate region. The heat sink effect causes the gate silicidation rate to more closely correspond with the relatively slow source and drain silicidation rates. The method further includes a blanket irradiation step to diffuse metal into the runner regions to form silicide alloy regions which are then treated to form silicide regions.
    • 本发明的方法可用于形成集成MISFET器件的硅化物接触。 形成场隔离层以电隔离硅衬底的一部分,并且在其中形成栅极,源极和漏极区域。 在隔离层上形成有与集成器件电连接的多晶硅浇道。 对硅栅,源极,漏极和流道区域的非晶化部分进行离子注入。 形成与非晶化区域接触的金属层,并且使用掩模选择性地照射覆盖在一体化器件的有源区域上的金属层。 光熔化栅极的一部分,并且源极和漏极区域非晶化,而集成器件和衬底的其余部分保持固相。 金属扩散到熔融的栅极,源极和漏极区域中,从而将其转变成相应的硅化物合金区域。 优选地,在选择性照射期间,栅极区域的一部分不暴露于光,使得其相对较冷,并且用作散热器以将热量从栅极区域的照射部分吸走。 散热效应使栅极硅化速率更接近于相对较慢的源极和漏极硅化速率。 该方法还包括毯子辐射步骤,以将金属扩散到流道区域中以形成硅化物合金区域,然后将其处理形成硅化物区域。
    • 30. 发明授权
    • Method for laser thermal processing using thermally induced reflectivity switch
    • 使用热诱导反射率开关的激光热处理方法
    • US06635588B1
    • 2003-10-21
    • US10078842
    • 2002-02-19
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • Andrew M. HawrylukSomit TalwarYun WangMichael O. Thompson
    • H01L2126
    • H01L21/02686B23K26/009B23K26/18H01L21/02691H01L21/2026H01L21/268H01L21/324
    • Method for controlling heat transferred to a workpiece (W) process region (30) from laser radiation (10) using a thermally induced reflectivity switch layer (60). A film stack (6) is formed having an absorber layer (50) atop the workpiece with a portion covering the process region. The absorber layer absorbs and converts laser radiation into heat. Reflective switch layer (60) is deposited atop the absorber layer. The reflective switch layer comprises one or more layers, e.g. thermal insulator and reflectivity transition layers. The reflective switch layer covering the process region has a temperature related to the temperature of the process region. Reflectivity of the switch layer changes from a low to a high reflectivity state at a critical temperature of the process region, limiting radiation absorbed by the absorber layer by reflecting incident radiation when switched. This limits the amount of heat transferred to the process region from the absorber layer.
    • 用于使用热诱导反射率开关层(60)控制从激光辐射(10)传送到工件(W)处理区域(30)的热的方法。 一个薄膜叠层(6)被形成为具有覆盖工艺区域的部分的工件上方的吸收层(50)。 吸收层吸收并将激光辐射转换成热。 反射开关层(60)沉积在吸收层的顶部。 反射开关层包括一个或多个层,例如 隔热层和反射层过渡层。 覆盖处理区域的反射开关层具有与处理区域的温度相关的温度。 开关层的反射率在处理区域的临界温度从低反射率状态变化到高反射率状态,通过在切换时反射入射辐射来限制吸收层吸收的辐射。 这限制了从吸收层传递到处理区域的热量。