会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明授权
    • Detecting inadvertent or malicious data corruption in storage subsystems and recovering data
    • 检测存储子系统中的无意或恶意数据损坏并恢复数据
    • US08315991B2
    • 2012-11-20
    • US12763934
    • 2010-04-20
    • Nagapramod S. MandagereMark J. SeamanSandeep M. Uttamchandani
    • Nagapramod S. MandagereMark J. SeamanSandeep M. Uttamchandani
    • G06F17/30
    • G06F11/1435G06F17/30368G06F2201/84
    • Embodiments of the invention detect inadvertent or malicious data corruption and for recovering data including receiving a query specifying corrupted application data; analyzing transaction logs to find update operations related to the data; determining where the data are stored, by mapping the table data to locations within the file system and mapping the file system locations to volume logical blocks; and analyzing snapshot volume bitmaps to determine if the bitmaps show changes to the table data stored in the volume logical blocks. Changes which are reflected in the bitmaps for the data, but which do not have corresponding entries in the transaction logs are flagged as unauthorized changes. Snapshots of the data, from a time prior to the time at which a flagged snapshot was taken, are identified for use in restoring data to its status prior to the unauthorized change.
    • 本发明的实施例检测无意或恶意的数据损坏并且用于恢复数据,包括接收指定损坏的应用数据的查询; 分析事务日志以查找与数据相关的更新操作; 通过将表数据映射到文件系统内的位置并将文件系统位置映射到卷逻辑块来确定数据的存储位置; 并分析快照卷位图以确定位图是否显示存储在卷逻辑块中的表数据的更改。 反映在数据的位图中但在事务日志中没有相应条目的更改将被标记为未经授权的更改。 在从被标记的快照拍摄之前的时间起,数据的快照被识别用于在未经授权的更改之前将数据恢复到其状态。
    • 23. 发明申请
    • STORAGE MANAGEMENT THROUGH ADAPTIVE DEDUPLICATION
    • 存储管理通过自适应校验
    • US20100250501A1
    • 2010-09-30
    • US12411902
    • 2009-03-26
    • Nagapramod MandagereMark A. SmithSandeep M. UttamchandaniPin Zhou
    • Nagapramod MandagereMark A. SmithSandeep M. UttamchandaniPin Zhou
    • G06F12/02G06F12/00G06F17/30
    • G06F17/30598G06F17/30489
    • One embodiment retrieves a first portion of a plurality of stored objects from at least one storage device. The embodiment further performs a base type deduplication estimation process on the first portion of stored objects. The embodiment still further categorizes the first portion of the plurality of stored objects into deduplication sets based on a deduplication relationship of each object of the plurality of stored objects with each of the estimated first plurality of deduplication chunk portions. The embodiment further combines deduplication sets into broad classes based on deduplication characteristics of the objects in the deduplication sets. The embodiment still further classifies a second portion of the plurality of stored objects into broad classes using classifiers. The embodiment further selects an appropriate deduplication approach for each categorized class.
    • 一个实施例从至少一个存储设备检索多个存储对象的第一部分。 该实施例还对存储对象的第一部分执行基本类型的重复数据删除估计处理。 该实施例还基于多个存储对象中的每个对象与所估计的第一多个重复数据删除块部分中的每一个的重复数据删除关系,进一步将多个存储对象的第一部分分类为重复数据删除集合。 该实施例还将重复数据删除集合基于重复数据删除集中的对象的重复数据删除特性组合成大类。 该实施例还使用分类器进一步将多个存储对象的第二部分分类为广泛类。 该实施例进一步为每个分类的类选择适当的重复数据删除方法。
    • 24. 发明授权
    • Self-modulation in a model-based automated management framework
    • 基于模型的自动化管理框架中的自调制
    • US07444272B2
    • 2008-10-28
    • US11250066
    • 2005-10-13
    • Guillermo A. AlvarezLinda M. DuyanovichJohn D. PalmerSandeep M. UttamchandaniLi Yin
    • Guillermo A. AlvarezLinda M. DuyanovichJohn D. PalmerSandeep M. UttamchandaniLi Yin
    • G06F17/10G06E1/00
    • G05B17/02G05B13/042
    • Embodiments herein present a method, system, computer program product, etc. for automated management using a hybrid of prediction models and feedback-based systems. The method begins by calculating confidence values of models. Next, the method selects a first model based on the confidence values and processes the first model through a constraint solver to produce first workload throttling values. Following this, workloads are repeatedly processed through a feedback-based execution engine, wherein the feedback-based execution engine is controlled by the first workload throttling values. The first workload throttling values are applied incrementally to the feedback-based execution engine, during repetitions of the processing of the workloads, with a step-size that is proportional to the confidence values. The processing of the workloads is repeated until an objective function is maximized, wherein the objective function specifies performance goals of the workloads.
    • 本文的实施例提出了使用预测模型和基于反馈的系统的混合的自动化管理的方法,系统,计算机程序产品等。 该方法从计算模型的置信度开始。 接下来,该方法基于置信度值选择第一模型,并通过约束求解器处理第一模型以产生第一工作负载节流值。 此后,通过基于反馈的执行引擎重复处理工作负载,其中基于反馈的执行引擎由第一工作负载节流值控制。 在重复处理工作负载期间,第一个工作负载限制值将逐步应用于基于反馈的执行引擎,步长与置信度值成比例。 重复处理工作负载直到目标函数最大化,其中目标函数指定工作负载的性能目标。
    • 27. 发明授权
    • Data de-duplication in computer storage systems
    • 计算机存储系统中的重复数据删除
    • US08781800B2
    • 2014-07-15
    • US13286490
    • 2011-11-01
    • Kavita ChavdaEric W. Davis RozierNagapramod S. MandagereSandeep M. UttamchandaniPin Zhou
    • Kavita ChavdaEric W. Davis RozierNagapramod S. MandagereSandeep M. UttamchandaniPin Zhou
    • G06F17/10
    • G06F7/00G06F17/30159
    • Embodiments of the present invention provide an approach that utilizes discrete event simulation to quantitatively analyze the reliability of a modeled de-duplication system in a computer storage environment. In addition, the approach described herein can perform such an analysis on systems having heterogeneous data stored on heterogeneous storage systems in the presence of primary faults and their secondary effects due to de-duplication. In a typical embodiment, data de-duplication parameters and a hardware configuration are received in a computer storage medium. A data de-duplication model is then applied to a set of data and to the data de-duplication parameters, and a hardware reliability model is applied to the hardware configuration. Then a set (at least one) of discrete events is simulated based on the data de-duplication model as applied to the set of data and the data de-duplication parameters, and the hardware reliability model as applied to the hardware configuration. Based on the simulation, a set of data reliability and availability estimations/estimates can be generated (e.g., and outputted/provided).
    • 本发明的实施例提供一种利用离散事件模拟来定量分析计算机存储环境中的建模的重复数据删除系统的可靠性的方法。 另外,本文描述的方法可以在存在主异构存在的异构存储系统上的具有异构数据的系统上进行这种分析,并且由于重复数据删除而产生其次要效应。 在典型的实施例中,在计算机存储介质中接收数据重复数据删除参数和硬件配置。 然后将数据重复数据删除模型应用于一组数据和重复数据删除参数,并将硬件可靠性模型应用于硬件配置。 然后基于应用于数据集和数据重复数据删除参数的数据重复数据删除模型以及应用于硬件配置的硬件可靠性模型来模拟一组(至少一个)离散事件。 基于该仿真,可以生成(例如和输出/提供)一组数据可靠性和可用性估计/估计。