会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明授权
    • Refrigerant composition control system for use in heat pumps using
non-azeotropic refrigerant mixtures
    • 使用非共沸混合制冷剂的制冷剂组合物控制系统
    • US5186012A
    • 1993-02-16
    • US764788
    • 1991-09-24
    • Marek CzachorskiKenneth J. Kountz
    • Marek CzachorskiKenneth J. Kountz
    • C09K5/04F25B9/00F25B13/00F25B27/00
    • C09K5/041F25B13/00F25B27/00F25B9/006
    • A heat pump system using a non-azeotropic refrigerant mixture comprising a main refrigeration circuit, an engine coolant circuit, and a refrigerant rectifier circuit interfacing with main refrigeration circuit, and the engine coolant circuit. The refrigerant rectifier circuit comprises in order of decreasing relative elevation a condenser, a storage vessel in communication with a condenser, a rectifier in communication with a storage tank and a condenser, a receiver vessel in communication with a rectifier, and a boiler in communication with the rectifier and the receiver vessel. The refrigerant rectifier circuit is used to adjust the relative concentrations of lower boiling point refrigerant, and higher boiling point refrigerant in the non-azeotropic refrigerant mixture thereby changing the cooling or heating capacity of the heat pump system.
    • 一种使用非共沸混合制冷剂混合物的热泵系统,包括主制冷回路,发动机冷却剂回路和与主制冷回路连接的制冷剂整流回路以及发动机冷却液回路。 制冷剂整流回路按照降低相对高度的顺序包括冷凝器,与冷凝器连通的存储容器,与储罐和冷凝器连通的整流器,与整流器连通的接收器容器,以及与整流器连通的锅炉 整流器和接收器容器。 制冷剂整流回路用于调节非共沸混合制冷剂中低沸点制冷剂和高沸点制冷剂的相对浓度,从而改变热泵系统的冷却或加热能力。
    • 22. 发明授权
    • Self-optimizing, capacity control system for inverter-driven centrifugal
compressor based water chillers
    • 自动优化,变频驱动离心压缩机的冷水机组容量控制系统
    • US4608833A
    • 1986-09-02
    • US685685
    • 1984-12-24
    • Kenneth J. Kountz
    • Kenneth J. Kountz
    • F04D27/00F04D27/02F25B49/02F25D13/00F25B1/00
    • F25B49/025F04D27/0246F04D27/0261F04D27/0284F25B49/022F25B2600/021Y02B30/741
    • A self-optimizing, capacity control system for a refrigeration system including a compressor, a condenser, and an evaporator, all connected in a closed refrigeration circuit is provided. The compressor includes a plurality of adjustable inlet guide vanes, a motor connected to regulate the inlet guide vanes position and an electrical speed motor connected to drive the compressor. The self-optimizing capacity control system includes a microprocessor responsive to continual measurements of a PRV signal, a compressor head signal, a motor current signal and a motor speed signal for determining both the compressor speed and the position of the inlet guide vanes to define a current operating point in an initial surge surface array stored in a random-access memory. The microprocessor will initiate a "learning" mode in which the compressor motor speed will continually be decreased incrementally and the PRV will be moved to a more open position until an operating point is found where the compressor is surging. The microprocessor will update the initial surge surface array stored in the random-access memory with the latest surge conditions. Then, the microprocessor will initiate an "operating" mode in which the PRV are moved to a position responsive to a temperature error signal related to the difference between the chilled water temperature and the temperature set point and the compressor speed is set a safety margin away from the surge speed.
    • 本发明提供一种全封闭制冷回路连接的包括压缩机,冷凝器和蒸发器的制冷系统的自优化容量控制系统。 压缩机包括多个可调节的入口引导叶片,连接以调节入口导向叶片位置的马达和连接以驱动压缩机的电动马达。 自优化容量控制系统包括响应于PRV信号的连续测量的响应于压缩机头信号,电动机电流信号和电动机速度信号的微处理器,用于确定压缩机速度和入口导向叶片的位置, 存储在随机存取存储器中的初始浪涌表面阵列中的当前工作点。 微处理器将启动“学习”模式,其中压缩机电动机速度将不断地逐渐减小,并且PRV将被移动到更开放的位置,直到找到压缩机正在喘振的操作点。 微处理器将使用最新的浪涌条件更新存储在随机存取存储器中的初始浪涌表面阵列。 然后,微处理器将启动“操作”模式,其中PRV被移动到响应于与冷冻水温度和温度设定点之间的差异相关的温度误差信号的位置,并且压缩机速度被设置为安全距离 从浪涌速度。
    • 23. 发明授权
    • Temperature control system for refrigeration apparatus
    • 制冷设备温度控制系统
    • US4132086A
    • 1979-01-02
    • US773379
    • 1977-03-01
    • Kenneth J. Kountz
    • Kenneth J. Kountz
    • F24F11/02B60H1/32F25B1/00F25B49/02G05D23/00G05D23/24
    • B60H1/3211F25B49/022G05D23/1931G05D23/24B60H2001/3252B60H2001/3254B60H2001/3263B60H2001/3275
    • A controlled space is maintained at a desired set point temperature by adjusting the evaporator boiling pressure in a refrigeration system, thereby controlling the evaporator capacity (namely, the amount of cooling imparted to the air supplied to the space) which is inversely proportional to the evaporator boiling pressure. When the space temperature tends to vary from the desired set point due, for example, to a changing heat load, the control system automatically changes the refrigerant flow through the evaporator to establish the evaporator boiling pressure (and hence the boiling temperature) at the control point required to cool the air sufficiently to maintain the controlled space at the desired temperature. More specifically, in response to a space temperature increase, the flow rate of the refrigerant increases to decrease the evaporator boiling pressure; and in response to a drop below the set point, the refrigerant flow decreases to increase the evaporator boiling pressure. Such control of the flow rate, and consequently the evaporator boiling pressure, is achieved by varying the displacement of a controlled displacement compressor included in the refrigeration system. When the heat load on the evaporator is constant, the refrigerant flow is automatically controlled in order to hold the evaporator boiling pressure fixed at the required control point.
    • 通过调节制冷系统中的蒸发器沸腾压力将受控空间维持在所需的设定点温度,从而控制蒸发器的容量(即,供应给空间的空气的冷却量)与蒸发器成反比 沸腾压力。 当空间温度趋向于由于例如由于热负荷变化而导致的期望设定点变化时,控制系统自动地改变通过蒸发器的制冷剂流量,从而在控制下建立蒸发器沸腾压力(因此沸点温度) 足以冷却空气以将受控空间维持在所需温度所需的点。 更具体地,响应于空间温度升高,制冷剂的流量增加以降低蒸发器沸腾压力; 并且响应于低于设定点的下降,制冷剂流量减小以增加蒸发器沸腾压力。 通过改变包括在制冷系统中的受控排量的压缩机的位移来实现流量的这种控制以及因此蒸发器沸腾压力的控制。 当蒸发器上的热负荷恒定时,制冷剂流量被自动控制,以将蒸发器沸腾压力固定在所需控制点。