会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 25. 发明申请
    • CHANNEL DETECTION IN NOISE USING SINGLE CHANNEL DATA
    • 使用单通道数据进行通道检测
    • US20130275128A1
    • 2013-10-17
    • US13804947
    • 2013-03-14
    • Heiko ClaussenJustinian Rosca
    • Heiko ClaussenJustinian Rosca
    • G10L15/20
    • G10L15/20G10L17/08G10L25/27G10L25/78
    • Methods related to Generalized Mutual Interdependence Analysis (GMIA), a low complexity statistical method for projecting data in a subspace that captures invariant properties of the data, are implemented on a processor based system. GMIA methods are applied to the signal processing problem of voice activity detection and classification. Real-world conversational speech data are modeled to fit the GMIA assumptions. Low complexity GMIA computations extract reliable features for classification of sound under noisy conditions and operate with small amounts of data. A speaker is characterized by a slow varying or invariant channel that is learned and is tracked from single channel data by GMIA methods.
    • 与广义相互依赖关系分析(GMIA)相关的方法是在基于处理器的系统上实现的一种低复杂度统计方法,用于在捕获数据不变属性的子空间中投影数据。 GMIA方法应用于语音活动检测和分类的信号处理问题。 现实世界对话语音数据被建模以适应GMIA假设。 低复杂度的GMIA计算提取了可靠的特征,用于在嘈杂条件下对声音进行分类,并使用少量数据进行操作。 扬声器的特征在于慢速变化或不变的通道,通过GMIA方法从单通道数据中学习并跟踪。
    • 26. 发明授权
    • Systems and methods for turbo on-line one-class learning
    • 涡轮在线一级学习的系统和方法
    • US08489524B2
    • 2013-07-16
    • US13084692
    • 2011-04-12
    • Heiko ClaussenJustinian Rosca
    • Heiko ClaussenJustinian Rosca
    • G06F15/18
    • G06N99/005
    • Methods for one-class learning using support vector machines from a plurality of data batches are provided. A first support vector machine is learned from the plurality of data batches by a processor. A new data batch is received by the processor and is classified by the first support vector machine. If a non-zero loss classification occurs a new support vector machine is trained using the first support vector machine and the new data batch only. Data batches can be discarded if they are represented by the current support vector machine or after being used for training an updated support vector machine. Weighing factors applied to update the first support vector machine depend upon a parameter which is optimized iteratively. Support vectors do not need to be recalculated. A classifier is learned in a number of stages equal to the number of data batches processed on-line.
    • 提供了使用来自多个数据批次的支持向量机的一类学习的方法。 通过处理器从多个数据批中学习第一支持向量机。 处理器接收到新的数据批次,并由第一支持向量机分类。 如果发生非零损失分类,则仅使用第一支持向量机和新的数据批次训练新的支持向量机。 如果数据批次由当前的支持向量机表示,或者在用于训练更新的支持向量机之后,则可以丢弃它们。 应用于更新第一支持向量机的称重因子取决于迭代优化的参数。 支持向量不需要重新计算。 在与在线处理的数据批次数相等的多个阶段中学习分类器。
    • 27. 发明授权
    • Passive and active wireless building management system and method
    • 被动和主动无线楼宇管理系统及方法
    • US08315839B2
    • 2012-11-20
    • US12553753
    • 2009-09-03
    • Justinian RoscaOsman AhmedChellury R. Sastry
    • Justinian RoscaOsman AhmedChellury R. Sastry
    • G06F17/50
    • H04W16/20H04L12/282H04L12/2823H04L67/12H04L2012/2841H04L2012/285
    • A building system includes a communication network, a plurality of wireless nodes, a plurality of passive wireless devices, and a processing circuit. The plurality of wireless nodes are disposed within a building operably and are coupled to the communication network. Each of the passive wireless devices is affixed to or within an object within the building. At least some of the objects constitute fixtures within the building. Each passive wireless device contains first information regarding at least one property of the object, and is configured to communicate wirelessly to at least one of the wireless nodes using power derived from communication signals detected in the passive wireless device. The processing circuit operably is coupled to receive the first information from the wireless devices, the processing circuit configured to update a model of at least a portion of a building based at least in part on the at least one property of the objects.
    • 建筑系统包括通信网络,多个无线节点,多个无源无线设备和处理电路。 多个无线节点可操作地设置在建筑物内,并且耦合到通信网络。 无源无线设备中的每一个被固定到建筑物内的物体内或内部。 至少一些物体构成建筑物内的固定装置。 每个无源无线设备包含关于对象的至少一个属性的第一信息,并且被配置为使用从在无源无线设备中检测到的通信信号导出的功率而无线地通信到至少一个无线节点。 所述处理电路可操作地被耦合以从所述无线设备接收所述第一信息,所述处理电路被配置为至少部分地基于所述对象的所述至少一个属性来更新建筑物的至少一部分的模型。
    • 29. 发明授权
    • Method and apparatus for noise filtering
    • 用于噪声滤波的方法和装置
    • US07110944B2
    • 2006-09-19
    • US11191105
    • 2005-07-27
    • Radu Victor BalanJustinian Rosca
    • Radu Victor BalanJustinian Rosca
    • G10L21/02
    • G10L21/0208H04R3/005
    • A method of filtering noise from a mixed sound signal to obtain a filtered target signal, includes inputting the mixed signal through a plurality of sensors into a plurality of channels, separately Fourier transforming each the mixed signal into the frequency domain, computing a signal short-time spectral amplitude |Ŝ| from the transformed signals, computing a signal short-time spectral complex exponential ei arg(S) from said transformed signals, where arg(S) is the phase of the target signal in the frequency domain, computing said target signal S in the frequency domain from said spectral amplitude and said complex exponential, and computing a spectral power matrix and using the spectral power matrix to compute the spectral amplitude and the spectral complex exponential.
    • 一种从混合声音信号中滤除噪声以获得滤波的目标信号的方法,包括通过多个传感器将混合信号输入多个信道,将混合信号中的每一个分别进行傅里叶变换到频域, 时间谱振幅| S | 从变换的信号中,从所述变换的信号计算信号短时频谱复指数e(S),其中arg(S)是频域中的目标信号的相位,计算 从所述频谱幅度和所述复指数的频域中的所述目标信号S,并计算频谱功率矩阵并使用频谱功率矩阵来计算频谱幅度和频谱复数指数。
    • 30. 发明授权
    • Optimal ratio estimator for multisensor systems
    • 多传感器系统的最优比率估计器
    • US06868365B2
    • 2005-03-15
    • US10435206
    • 2003-05-09
    • Radu Victor BalanJustinian Rosca
    • Radu Victor BalanJustinian Rosca
    • G06K9/00G06K9/62G06F15/17
    • G06K9/6245
    • A signal processing technique can be effectively used for source separation, signal enhancement, and noise reduction when using a twin microphone system. The class of stochastic signals for which ratio-estimates can be computed from histograms is defined. This class fits real-world signals of interest such as voice signals. Theoretical computation in closed form of the optimal estimator for this class of signals is disclosed. Two practical implementation solutions are disclosed, as is a practical solution to exploit an echoic environment model. Furthermore, two novel techniques for signal demixing are presented. The application of the optimal estimator and the suboptimal estimator to the case of more than two channels is disclosed.
    • 当使用双麦克风系统时,信号处理技术可以有效地用于源分离,信号增强和降噪。 定义可以从直方图计算比率估计的随机信号类。 这个类适合现实世界的信号,如语音信号。 公开了这类信号的最优估计器的封闭形式的理论计算。 公开了两个实际的实现解决方案,作为利用回波环境模型的实际解决方案。 此外,提出了两种用于信号分类的新颖技术。 公布了最佳估计器和次优估计器在多于两个通道情况下的应用。