会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明申请
    • AUTONOMIC WEB SERVICES PRICING MANAGEMENT
    • 自动网络服务定价管理
    • US20070282984A1
    • 2007-12-06
    • US11422200
    • 2006-06-05
    • Ronald P. DoyleDavid L. Kaminsky
    • Ronald P. DoyleDavid L. Kaminsky
    • G06F15/173
    • H04L43/0876H04L67/02
    • Embodiments of the present invention address deficiencies of the art in respect to managing service level guarantees for a Web service and provide a method, system and computer program product for Web service pricing in an on-demand environment. In one embodiment of the invention, an automated Web services pricing management method can be provided. The method can include loading an economic model for a Web service, deploying the Web service and measuring quality metrics for the Web service. Once quality metrics have been measured for the Web service, the economic model can be consulted to identify a penalty for the Web service commensurate with the measured quality metrics. Thereafter, the penalty can be established for the Web service.
    • 本发明的实施例解决了关于管理Web服务的服务级别保证的本领域的缺点,并且提供了在按需环境中用于Web服务定价的方法,系统和计算机程序产品。 在本发明的一个实施例中,可以提供自动化的Web服务定价管理方法。 该方法可以包括加载Web服务的经济模型,部署Web服务以及测量Web服务的质量度量。 一旦对Web服务进行了质量度量衡量,就可以查看经济模型,以确定与测量的质量度量相称的Web服务的惩罚。 此后,可以为Web服务建立惩罚。
    • 22. 发明授权
    • Optimized resource management for map/reduce computing
    • 优化资源管理,用于地图/减少计算
    • US09323580B2
    • 2016-04-26
    • US13406873
    • 2012-02-28
    • Ronald P. DoyleDavid L. Kaminsky
    • Ronald P. DoyleDavid L. Kaminsky
    • G06F15/173G06F9/50H04L12/24
    • G06F9/5066H04L41/0813H04L41/0896
    • The present invention includes a method for resource optimization of map/reduce computing in a computing cluster. The method can include receiving a computational problem for processing in a map/reduce module, subdividing the computational problem into a set of sub-problems and mapping a selection of the sub-problems in the set to respective nodes in a computing cluster, for example a cloud computing cluster, computing for a subset of the nodes in the computing cluster a required resource capacity of the subset of the nodes to process a mapped one of the sub-problems and an existing capacity of the subset of the nodes, and augmenting the existing capacity to an augmented capacity when the required resource capacity exceeds the existing capacity, and when a cost of augmenting the existing capacity to the augmented capacity does not exceed a penalty for breaching a service level agreement (SLA) for the subset of the nodes.
    • 本发明包括用于计算集群中的映射/减少计算的资源优化的方法。 该方法可以包括在地图/缩小模块中接收用于处理的计算问题,将计算问题细分为一组子问题,并将集合中的子问题的选择映射到计算集群中的相应节点,例如 云计算集群,计算群集中节点子集的一部分,节点子集的所需资源容量,以处理映射的一个子问题和节点子集的现有容量,并增加 当所需资源容量超过现有容量时,增加容量的现有容量,以及当增加容量的现有容量的成本不超过违反节点子集的服务级别协议(SLA)的惩罚。
    • 23. 发明授权
    • Automated cloud workload management in a map-reduce environment
    • 在减少地图的环境中自动化云工作负载管理
    • US09141433B2
    • 2015-09-22
    • US12642659
    • 2009-12-18
    • Ronald P. DoyleDavid L. Kaminsky
    • Ronald P. DoyleDavid L. Kaminsky
    • G06F9/46G06F9/50
    • H04L67/1008G06F9/5044G06F9/5072H04L67/322
    • A computing device associated with a cloud computing environment identifies a first worker cloud computing device from a group of worker cloud computing devices with available resources sufficient to meet required resources for a highest-priority task associated with a computing job including a group of prioritized tasks. A determination is made as to whether an ownership conflict would result from an assignment of the highest-priority task to the first worker cloud computing device based upon ownership information associated with the computing job and ownership information associated with at least one other task assigned to the first worker cloud computing device. The highest-priority task is assigned to the first worker cloud computing device in response to determining that the ownership conflict would not result from the assignment of the highest-priority task to the first worker cloud computing device.
    • 与云计算环境相关联的计算设备使用足够的资源来满足来自一组工作者云计算设备的第一工作者云计算设备,以满足与包括一组优先化任务的计算作业相关联的最高优先级任务所需的资源。 确定基于与计算作业相关联的所有权信息和与分配给第一工作者云计算设备的至少一个其他任务相关联的所有权信息将最高优先级任务分配给第一工作者云计算设备是否产生所有权冲突 第一个工作者云计算设备。 响应于确定所述权限冲突不会由最高优先级任务分配给第一工作者云计算设备而将最高优先级任务分配给第一工作者云计算设备。
    • 24. 发明授权
    • Network-aware structured content downloads
    • 网络感知结构化内容下载
    • US08930448B2
    • 2015-01-06
    • US13435091
    • 2012-03-30
    • Ronald P. DoyleDavid L. Kaminsky
    • Ronald P. DoyleDavid L. Kaminsky
    • G06F15/16H04L29/08G06F17/30H04W4/18
    • H04L67/06G06F17/30899H04L67/02H04L67/10H04L67/32H04W4/18
    • A request for content is received at a content server via a first network connection from a client device. The content includes a set of portions represented within a root document. Based upon a download constraint of at least one portion of the content and a network characteristic of the first network connection, at least one portion of the content is deferred for download over a network connection other than the first network connection. The content is sent with each deferred portion of the content replaced with a content stub within the root document. Each content stub identifies the respective portion of the content as a deferred portion of the content and includes a content identifier of the respective deferred portion of the content.
    • 通过来自客户端设备的第一网络连接在内容服务器处接收对内容的请求。 内容包括在根文档内表示的一组部分。 基于内容的至少一部分的下载约束和第一网络连接的网络特性,内容的至少一部分被推迟通过除了第一网络连接之外的网络连接进行下载。 发送内容,每个延迟部分的内容替换为根文档内的内容存根。 每个内容存根将内容的相应部分标识为内容的延迟部分,并且包括内容的相应延迟部分的内容标识符。
    • 25. 发明授权
    • Holistic task scheduling for distributed computing
    • 分布式计算的整体任务调度
    • US08595735B2
    • 2013-11-26
    • US13407669
    • 2012-02-28
    • Ronald P. DoyleDavid L. Kaminsky
    • Ronald P. DoyleDavid L. Kaminsky
    • G06F9/46G06F15/173
    • G06F9/4881
    • Embodiments of the present invention provide a method for holistic task scheduling in a distributed computing environment. In an embodiment of the invention, a method for holistic task scheduling in a distributed computing environment is provided. The method includes selecting a first task for a first job and a second task for a different, second job, both jobs being scheduled for processing within a node of a distributed computing environment by a task scheduler executing in memory by at least one processor of a computer. The method also can include comparing an estimated time to complete the first and second jobs. Finally, the first task can be scheduled for processing in the node when the estimated time to complete the second job exceeds the estimated time to complete the first job. Otherwise the second task can be scheduled for processing in the node when the estimated time to complete the first job exceeds the estimated time to complete the second job.
    • 本发明的实施例提供了一种用于分布式计算环境中的整体任务调度的方法。 在本发明的实施例中,提供了一种用于分布式计算环境中的整体任务调度的方法。 该方法包括为不同的第二作业选择用于第一作业的第一任务和第二任务,两个作业被调度用于在由分布式计算环境的节点内处理的任务调度器中,所述任务调度器由存储器中的至少一个处理器 电脑。 该方法还可以包括比较估计的时间以完成第一和第二作业。 最后,当完成第二个工作的预计时间超过完成第一个作业的预计时间时,可以安排第一个任务在节点中进行处理。 否则,当完成第一个作业的估计时间超过完成第二个作业的估计时间时,可以将第二个任务安排在节点中进行处理。
    • 27. 发明申请
    • AUTOMATED CLOUD WORKLOAD MANAGEMENT IN A MAP-REDUCE ENVIRONMENT
    • 自动化云在地图减少环境中的工作流程管理
    • US20120192197A1
    • 2012-07-26
    • US13434768
    • 2012-03-29
    • Ronald P. DoyleDavid L. Kaminsky
    • Ronald P. DoyleDavid L. Kaminsky
    • G06F9/50G06F15/16
    • H04L67/1008G06F9/5044G06F9/5072H04L67/322
    • A computing device associated with a cloud computing environment identifies a first worker cloud computing device from a group of worker cloud computing devices with available resources sufficient to meet required resources for a highest-priority task associated with a computing job including a group of prioritized tasks. A determination is made as to whether an ownership conflict would result from an assignment of the highest-priority task to the first worker cloud computing device based upon ownership information associated with the computing job and ownership information associated with at least one other task assigned to the first worker cloud computing device. The highest-priority task is assigned to the first worker cloud computing device in response to determining that the ownership conflict would not result from the assignment of the highest-priority task to the first worker cloud computing device.
    • 与云计算环境相关联的计算设备使用足够的资源来满足来自一组工作者云计算设备的第一工作者云计算设备,以满足与包括一组优先化任务的计算作业相关联的最高优先级任务所需的资源。 确定基于与计算作业相关联的所有权信息和与分配给第一工作者云计算设备的至少一个其他任务相关联的所有权信息将最高优先级任务分配给第一工作者云计算设备是否产生所有权冲突 第一个工作者云计算设备。 响应于确定所述权限冲突不会由最高优先级任务分配给第一工作者云计算设备而将最高优先级任务分配给第一工作者云计算设备。
    • 28. 发明申请
    • HOLISTIC TASK SCHEDULING FOR DISTRIBUTED COMPUTING
    • 用于分布式计算的HOSISTIC任务调度
    • US20120005682A1
    • 2012-01-05
    • US12828281
    • 2010-06-30
    • Ronald P. DoyleDavid L. Kaminsky
    • Ronald P. DoyleDavid L. Kaminsky
    • G06F9/46
    • G06F9/4881
    • Embodiments of the present invention provide a method, system and computer program product for holistic task scheduling in a distributed computing environment. In an embodiment of the invention, a method for holistic task scheduling in a distributed computing environment is provided. The method includes selecting a first task for a first job and a second task for a different, second job, both jobs being scheduled for processing within a node a distributed computing environment by a task scheduler executing in memory by at least one processor of a computer. The method also can include comparing an estimated time to complete the first and second jobs. Finally, the first task can be scheduled for processing in the node when the estimated time to complete the second job exceeds the estimated time to complete the first job. Otherwise the second task can be scheduled for processing in the node when the estimated time to complete the first job exceeds the estimated time to complete the second job.
    • 本发明的实施例提供了一种用于分布式计算环境中的整体任务调度的方法,系统和计算机程序产品。 在本发明的实施例中,提供了一种用于分布式计算环境中的整体任务调度的方法。 该方法包括为不同的第二作业选择用于第一作业的第一任务和第二任务,两个作业被调度用于由计算机中的至少一个处理器在存储器中执行的任务调度器在分布式计算环境内处理节点 。 该方法还可以包括比较估计的时间以完成第一和第二作业。 最后,当完成第二个工作的预计时间超过完成第一个作业的预计时间时,可以安排第一个任务在节点中进行处理。 否则,当完成第一个作业的估计时间超过完成第二个作业的估计时间时,可以将第二个任务安排在节点中进行处理。
    • 29. 发明授权
    • Automated cloud workload management in a map-reduce environment
    • 在减少地图的环境中自动化云工作负载管理
    • US08839260B2
    • 2014-09-16
    • US13434768
    • 2012-03-29
    • Ronald P. DoyleDavid L. Kaminsky
    • Ronald P. DoyleDavid L. Kaminsky
    • G06F9/46
    • H04L67/1008G06F9/5044G06F9/5072H04L67/322
    • A computing device associated with a cloud computing environment identifies a first worker cloud computing device from a group of worker cloud computing devices with available resources sufficient to meet required resources for a highest-priority task associated with a computing job including a group of prioritized tasks. A determination is made as to whether an ownership conflict would result from an assignment of the highest-priority task to the first worker cloud computing device based upon ownership information associated with the computing job and ownership information associated with at least one other task assigned to the first worker cloud computing device. The highest-priority task is assigned to the first worker cloud computing device in response to determining that the ownership conflict would not result from the assignment of the highest-priority task to the first worker cloud computing device.
    • 与云计算环境相关联的计算设备使用足够的资源来满足来自一组工作者云计算设备的第一工作者云计算设备,以满足与包括一组优先化任务的计算作业相关联的最高优先级任务所需的资源。 确定基于与计算作业相关联的所有权信息和与分配给第一工作者云计算设备的至少一个其他任务相关联的所有权信息将最高优先级任务分配给第一工作者云计算设备是否产生所有权冲突 第一个工作者云计算设备。 响应于确定所述权限冲突不会由最高优先级任务分配给第一工作者云计算设备而将最高优先级任务分配给第一工作者云计算设备。
    • 30. 发明申请
    • OPTIMIZED RESOURCE MANAGEMENT FOR MAP/REDUCE COMPUTING
    • 优化地图/减少计算资源管理
    • US20120215920A1
    • 2012-08-23
    • US13406873
    • 2012-02-28
    • Ronald P. DoyleDavid L. Kaminsky
    • Ronald P. DoyleDavid L. Kaminsky
    • G06F15/173
    • G06F9/5066H04L41/0813H04L41/0896
    • The present invention includes a method for resource optimization of map/reduce computing in a computing cluster. The method can include receiving a computational problem for processing in a map/reduce module, subdividing the computational problem into a set of sub-problems and mapping a selection of the sub-problems in the set to respective nodes in a computing cluster, for example a cloud computing cluster, computing for a subset of the nodes in the computing cluster a required resource capacity of the subset of the nodes to process a mapped one of the sub-problems and an existing capacity of the subset of the nodes, and augmenting the existing capacity to an augmented capacity when the required resource capacity exceeds the existing capacity, and when a cost of augmenting the existing capacity to the augmented capacity does not exceed a penalty for breaching a service level agreement (SLA) for the subset of the nodes.
    • 本发明包括用于计算集群中的映射/减少计算的资源优化的方法。 该方法可以包括在地图/缩小模块中接收用于处理的计算问题,将计算问题细分为一组子问题,并将集合中的子问题的选择映射到计算集群中的相应节点,例如 云计算集群,计算群集中节点子集的一部分,节点子集的所需资源容量,以处理映射的一个子问题和节点子集的现有容量,并增加 当所需资源容量超过现有容量时,增加容量的现有容量,以及当增加容量的现有容量的成本不超过违反节点子集的服务级别协议(SLA)的惩罚。