会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明申请
    • Multi-gas microsensor assembly
    • 多气体微传感器组件
    • US20100276287A1
    • 2010-11-04
    • US12660197
    • 2010-02-22
    • Mourad ManoukianAnthony B. LaContiW. Michael KrebsLinda A. TempelmanJohn W. Forchione, JR.Erich Muehlanger, JR.
    • Mourad ManoukianAnthony B. LaContiW. Michael KrebsLinda A. TempelmanJohn W. Forchione, JR.Erich Muehlanger, JR.
    • G01N27/26G01N27/28G01N27/407
    • G01N27/404
    • A multi-gas microsensor assembly for simultaneously detecting carbon dioxide and oxygen in real time. According to one embodiment, the assembly comprises a non-conductive, solid substrate. A plurality of sensing electrodes, a single reference electrode, and a single counter electrode are positioned on one side of the non-conductive, solid substrate. In addition, all of the electrodes are in intimate contact with the same side of a solid-polymer electrolyte anion-exchange membrane, the solid polymer electrolyte membrane having at least one gas diffusion opening aligned with each sensing electrode. The sensor is operated in a three-electrode potentiostatic mode, in which a constant potential is maintained between the sensing and reference electrodes, and the current is measured between the sensing and counter electrodes. Control of the electrodes is achieved with a small bi-potentiostat. The design of the bi-potentiostat allows at least two different sensing electrodes to share the same counter and reference electrodes.
    • 用于同时检测二氧化碳和氧气的多气体微量传感器组件。 根据一个实施例,组件包括非导电固体衬底。 多个感测电极,单个参考电极和单个对电极位于非导电固体衬底的一侧。 此外,所有电极与固体聚合物电解质阴离子交换膜的同一侧紧密接触,固体聚合物电解质膜具有与每个感测电极对准的至少一个气体扩散开口。 传感器在三电极恒电位模式下工作,其中在感测和参考电极之间保持恒定电位,并且在感测和对电极之间测量电流。 电极的控制通过小型双电位稳定器实现。 双电位器的设计允许至少两个不同的感测电极共享相同的计数器和参考电极。
    • 23. 发明授权
    • Solid polymer electrolyte electrochemical oxygen control system with integral reactor feedback sensing
    • US06179986B2
    • 2001-01-30
    • US09186942
    • 1998-11-05
    • Larry L. SwetteAnthony B. LaConti
    • Larry L. SwetteAnthony B. LaConti
    • C25B100
    • B01D53/32A23L3/003A23L3/3418B01D53/22
    • Disclosed is a novel proton-exchange membrane (PEM) based solid polymer electrolyte electrochemical oxygen control (EOC) system that can deplete and control the oxygen from a closed container to levels sufficient for both disinfestation and preservation. With the use of this electrochemical process, many insects that infest raw agricultural products and other produce can be exterminated, without detriment to the quality of the produce and without deposition of harmful residue, by reducing the ambient oxygen to a controlled low level for several days. The electrochemical process features the use of a bipolar stack comprised of a selected number of PEM cells connected electrically in series and separated by an electrically conductive bipolar plate. Each cell contains a membrane and electrode assembly, consisting of an anode structure and cathode structure in intimate contact with a PEM. When DC power is applied to the cell stack, electrons are supplied to the cathode, supporting reduction of oxygen at the cathode with the formation of water, and electrons removed from the anode, supporting oxygen evolution by the decomposition of water at the anode. The anode and cathode compartments are separated by the solid ionomer PEM, which transports protons generated at the anode through the PEM to the cathode to complete the electrical circuit internally. Oxygen is depleted by recirculating the gas in the dosed container over the cathode, and expelling the oxygen evolved at the anode by separating the oxygen from the recirculating anode water stream and venting it to the outside of the closed container. Nitrogen or other inert gas is added as makeup gas to avoid creating a negative pressure in the container. A unique feature of this process is that at a low oxygen concentration, the cell and stack cathode current becomes rate-limited in direct proportion to the oxygen level in the recirculating gas and can therefore be used as a measure of the container oxygen level. In the sensing/control scheme developed as part of this invention, the current is periodically allowed to rise to the diffusion limit in a “measure mode” and then reset according to the desired oxygen level, determined from a slope-intercept “measure mode” calibration curve, for a longer “control mode” period.
    • 24. 发明授权
    • Method for reducing the risk of perforation or gas leakage in
electrochemical and gas generating devices
    • 降低电化学和气体发生装置穿孔或气体泄漏的风险的方法
    • US5580672A
    • 1996-12-03
    • US486636
    • 1995-06-07
    • John A. Zagaja, IIIAnthony B. LaConti
    • John A. Zagaja, IIIAnthony B. LaConti
    • C25B9/00H01M8/02
    • H01M8/0206C25B9/00H01M8/0208H01M8/021H01M8/0228
    • This invention relates to the discovery that during operation and/or shutdown of electrochemical and gas generating devices corrosive materials are released from hardware and components employed therein and that such materials are principally responsible for observed pitting and perforation failure of the metallic hardware, including the separator/collector sheets, of these devices that serve to partition and hermetically seal compartments that support a hydrogen atmosphere. This invention therefore particularly relates to a method for improving the reliability of such devices by reducing brittle failure and perforation failure of these separator sheets by providing a composite separator sheet made up of a layer of a material resistant to molecular hydrogen embrittlement adhered to a layer of a corrosion resistant material. This invention further particularly relates to an improved electrochemical or gas generating device that employs the above-described composite separator sheet such that the hydrogen embrittlement resistant layer of the composite sheet faces the compartment that supports the hydrogen atmosphere.
    • 本发明涉及在电化学和气体发生装置的操作和/或停止期间腐蚀性材料从其中使用的硬件和部件释放的发现,并且这些材料主要负责金属硬件(包括分离器)的观察到的点蚀和穿孔故障 /收集器片,这些装置用于分隔和气密地密封支撑氢气氛的隔室。 因此,本发明特别涉及一种通过提供一种复合隔板,通过减少这些隔板的脆性破坏和穿孔破坏来提高这种装置的可靠性的方法,所述复合隔板由耐受分子氢脆的粘合层 耐腐蚀材料。 本发明还涉及一种改进的电化学或气体发生装置,其采用上述复合隔板片,使得复合片材的耐氢脆层面向支撑氢气氛的隔室。
    • 27. 发明授权
    • Multi-gas microsensor assembly
    • 多气体微传感器组件
    • US08366894B2
    • 2013-02-05
    • US12660197
    • 2010-02-22
    • Mourad ManoukianAnthony B. LaContiW. Michael KrebsLinda A. TempelmanJohn W. Forchione, Jr.Erich Muehlanger, Jr.
    • Mourad ManoukianAnthony B. LaContiW. Michael KrebsLinda A. TempelmanJohn W. Forchione, Jr.Erich Muehlanger, Jr.
    • G01N27/26G01N27/407
    • G01N27/404
    • A multi-gas microsensor assembly for simultaneously detecting carbon dioxide and oxygen in real time. According to one embodiment, the assembly comprises a non-conductive, solid substrate. A plurality of sensing electrodes, a single reference electrode, and a single counter electrode are positioned on one side of the non-conductive, solid substrate. In addition, all of the electrodes are in intimate contact with the same side of a solid-polymer electrolyte anion-exchange membrane, the solid polymer electrolyte membrane having at least one gas diffusion opening aligned with each sensing electrode. The sensor is operated in a three-electrode potentiostatic mode, in which a constant potential is maintained between the sensing and reference electrodes, and the current is measured between the sensing and counter electrodes. Control of the electrodes is achieved with a small bi-potentiostat. The design of the bi-potentiostat allows at least two different sensing electrodes to share the same counter and reference electrodes.
    • 用于同时检测二氧化碳和氧气的多气体微量传感器组件。 根据一个实施例,组件包括非导电固体衬底。 多个感测电极,单个参考电极和单个对电极位于非导电固体衬底的一侧。 此外,所有电极与固体聚合物电解质阴离子交换膜的同一侧紧密接触,固体聚合物电解质膜具有与每个感测电极对准的至少一个气体扩散开口。 传感器在三电极恒电位模式下工作,其中在感测和参考电极之间保持恒定电位,并且在感测和对电极之间测量电流。 电极的控制通过小型双电位稳定器实现。 双电位器的设计允许至少两个不同的感测电极共享相同的计数器和参考电极。
    • 29. 发明授权
    • Proton exchange membrane (PEM) electrochemical cell having an integral, electrically-conductive, resiliently compressible, porous pad
    • 质子交换膜(PEM)电化学电池具有整体的,导电的,弹性可压缩的多孔垫
    • US07438985B2
    • 2008-10-21
    • US11542896
    • 2006-10-04
    • Anthony B. LaContiWilliam A. TitteringtonLarry L. SwetteRicardo LeonKwang S. Kim
    • Anthony B. LaContiWilliam A. TitteringtonLarry L. SwetteRicardo LeonKwang S. Kim
    • H01M8/10
    • C25B9/10C25B9/04C25B9/08C25B9/206H01M8/0232H01M8/0234H01M8/0239H01M8/0243H01M8/0273H01M8/04104H01M8/1004H01M8/248H01M2008/1095
    • Electrolysis cell comprises, in one embodiment, a proton exchange membrane (PEM), an anode positioned along one face of the PEM, and a cathode positioned along the other face of the PEM. A multi-layer metal screen for defining a first fluid cavity is placed in contact with the outer face of the anode, and an electrically-conductive, compressible, spring-like, porous pad for defining a second fluid cavity is placed in contact with the outer face of the cathode. The porous pad comprises a mat of carbon fibers bound together with one or more, preferably thermoplastic, resins, the mat having a density of about 0.2-1.5 g/cm3. Cell frames are placed in peripheral contact with the metal screen and the compression pad for peripherally containing fluids present therewithin. Electrically-conductive separators are placed in contact with the metal screen and the compression pad for axially containing fluids present therewithin. A plurality of the cells may be arranged in series in a bipolar configuration without requiring a separate compression pad between cells (for gas pressure differentials up to about 400 psi or greater). The invention is also directed to a fuel cell wherein the pad replaces the carbon fiber paper or carbon fiber cloth in contact with the cathode or anode.
    • 在一个实施方案中,电解池包括质子交换膜(PEM),沿着PEM的一个面定位的阳极和沿着PEM的另一个面定位的阴极。 用于限定第一流体腔的多层金属屏幕被放置成与阳极的外表面接触,并且用于限定第二流体腔的导电的,可压缩的弹簧状多孔垫与 阴极的外表面。 多孔垫包括与一种或多种,​​优选热塑性树脂结合在一起的碳纤维毡,该垫具有约0.2-1.5g / cm 3的密度。 细胞框架与金属屏幕和用于周边地含有存在于其中的流体的压缩垫放置在周边接触中。 导电分离器被放置成与金属屏幕和压缩垫接触,用于轴向地容纳存在于其中的流体。 多个电池可以双极配置串联布置,而不需要电池之间的单独压缩焊盘(用于高达约400psi或更大的气体压力差)。 本发明还涉及一种燃料电池,其中衬垫代替与阴极或阳极接触的碳纤维纸或碳纤维布。
    • 30. 发明授权
    • Electrochemical-electrolytic capacitor and method of making the same
    • 电化学电解电容器及其制作方法
    • US07324329B2
    • 2008-01-29
    • US11316416
    • 2005-12-22
    • Badawi M. DweikJohn W. ForchioneMourad ManoukianJohn A. KosekAnthony B. LaContiDavid A. Evans
    • Badawi M. DweikJohn W. ForchioneMourad ManoukianJohn A. KosekAnthony B. LaContiDavid A. Evans
    • H01G9/00
    • H01G9/15H01G9/042H01G9/0425Y10T29/41Y10T29/417
    • A high-voltage electrochemical-electrolytic capacitor. The capacitor includes a cathode comprising a plurality of electrically-conductive particles in intimate electrical contact with one another and disposed in a proton-conductive, electrically-non-conductive, solid ionomer matrix. The capacitor also includes an anode comprising a plurality of electrically-conductive particles in intimate electrical contact with one another and disposed in a proton-conductive, electrically-non-conductive solid ionomer matrix, the electrically-conductive particles of the anode differing in composition from the electrically-conductive particles of said cathode. The capacitor further includes a proton-conducting dielectric positioned between and in contact with each of the cathode and the anode, the proton-conducting dielectric comprising a solid ionomer. Preferably, the capacitor is assembled by constructing a first portion and a second portion, the first portion comprising the cathode and an extra thickness of solid ionomer on its inner surface, the second portion comprising the anode and an extra thickness of solid ionomer on its inner surface. When the first and second portions are brought together, the extended thicknesses of the solid ionomer jointly form the proton-conducting dielectric.
    • 高压电化学电解电容器。 电容器包括阴极,其包括彼此紧密地电接触并设置在质子传导的非导电固体离聚物基质中的多个导电颗粒。 电容器还包括阳极,其包括彼此紧密地电接触并设置在质子传导的非导电固体离聚物基质中的多个导电颗粒,阳极的导电颗粒的组成不同于 所述阴极的导电颗粒。 电容器还包括位于阴极和阳极之间并与之接触的质子传导电介质,质子传导电介质包含固体离聚物。 优选地,通过构造第一部分和第二部分来组装电容器,第一部分包括阴极和在其内表面上具有额外厚度的固体离聚物,第二部分包括阳极和在其内部具有额外厚度的固体离聚物 表面。 当第一和第二部分合在一起时,固体离聚物的延伸厚度共同形成质子传导电介质。