会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明授权
    • High-confidence labeling of video volumes in a video sharing service
    • 在视频共享服务中高分辨率地标注视频卷
    • US08983192B2
    • 2015-03-17
    • US13601802
    • 2012-08-31
    • Rahul SukthankarJay Yagnik
    • Rahul SukthankarJay Yagnik
    • G06K9/46H04N9/82H04N21/234
    • H04N9/8205G06K9/00718G06K9/00744H04N21/23418
    • A volume identification system identifies a set of unlabeled spatio-temporal volumes within each of a set of videos, each volume representing a distinct object or action. The volume identification system further determines, for each of the videos, a set of volume-level features characterizing the volume as a whole. In one embodiment, the features are based on a codebook and describe the temporal and spatial relationships of different codebook entries of the volume. The volume identification system uses the volume-level features, in conjunction with existing labels assigned to the videos as a whole, to label with high confidence some subset of the identified volumes, e.g., by employing consistency learning or training and application of weak volume classifiers.The labeled volumes may be used for a number of applications, such as training strong volume classifiers, improving video search (including locating individual volumes), and creating composite videos based on identified volumes.
    • 体积识别系统识别一组视频中的每一个中的一组未标记的时空体积,每个体积表示不同的对象或动作。 音量识别系统进一步为每个视频确定表征整个音量的一组音量级特征。 在一个实施例中,特征基于码本并且描述卷的不同码本条目的时间和空间关系。 音量识别系统使用音量级特征,结合分配给整个视频的现有标签,以高度置信的方式标识所识别的体积的一些子集,例如通过采用一致性学习或训练和应用弱音量分类器 。 标记的卷可以用于许多应用,例如训练强大的分类器,改进视频搜索(包括定位各个卷),以及基于识别的卷创建复合视频。
    • 22. 发明授权
    • Filter based object detection using hash functions
    • 使用散列函数进行基于过滤器的对象检测
    • US08977627B1
    • 2015-03-10
    • US13286963
    • 2011-11-01
    • Sudheendra VijayanarasimhanJay Yagnik
    • Sudheendra VijayanarasimhanJay Yagnik
    • G06F7/00G06K9/46
    • G06K9/46G06K9/6232G06K9/6251
    • This disclosure relates to filter based object detection using hash functions. A hashing component can compute respective hash values for a set of object windows that are associated with an image to be scanned. The hashing component can employ various hash functions in connection with computing the hash values, such as a winner takes all (WTA) hash function. A filter selection component can compare the respective hash values of the object windows against a hash table of object filters, and can select one or more object filters for recognizing or localizing at least one of an object within the image as a function of the comparison.
    • 本公开涉及使用散列函数的基于过滤器的对象检测。 散列组件可以计算与要扫描的图像相关联的一组对象窗口的相应散列值。 散列组件可以使用与计算哈希值相关联的各种哈希函数,例如获胜者获得所有(WTA)散列函数。 过滤器选择组件可以将对象窗口的相应散列值与对象过滤器的散列表进行比较,并且可以选择一个或多个对象过滤器来根据比较来识别或定位图像内的对象中的至少一个。
    • 26. 发明申请
    • High-Confidence Labeling of Video Volumes in a Video Sharing Service
    • 视频共享服务中视频卷的高可信度标签
    • US20130114902A1
    • 2013-05-09
    • US13601802
    • 2012-08-31
    • Rahul SukthankarJay Yagnik
    • Rahul SukthankarJay Yagnik
    • G06K9/46
    • H04N9/8205G06K9/00718G06K9/00744H04N21/23418
    • A volume identification system identifies a set of unlabeled spatio-temporal volumes within each of a set of videos, each volume representing a distinct object or action. The volume identification system further determines, for each of the videos, a set of volume-level features characterizing the volume as a whole. In one embodiment, the features are based on a codebook and describe the temporal and spatial relationships of different codebook entries of the volume. The volume identification system uses the volume-level features, in conjunction with existing labels assigned to the videos as a whole, to label with high confidence some subset of the identified volumes, e.g., by employing consistency learning or training and application of weak volume classifiers.The labeled volumes may be used for a number of applications, such as training strong volume classifiers, improving video search (including locating individual volumes), and creating composite videos based on identified volumes.
    • 体积识别系统识别一组视频中的每一个中的一组未标记的时空体积,每个体积表示不同的对象或动作。 音量识别系统进一步为每个视频确定表征整个音量的一组音量级特征。 在一个实施例中,特征基于码本并且描述卷的不同码本条目的时间和空间关系。 音量识别系统使用音量级特征,结合分配给整个视频的现有标签,以高度置信的方式标识所识别的体积的一些子集,例如通过采用一致性学习或训练和应用弱音量分类器 。 标记的卷可以用于许多应用,例如训练强大的分类器,改进视频搜索(包括定位各个卷),以及基于识别的卷创建复合视频。
    • 27. 发明授权
    • Signal processing by ordinal convolution
    • 信号处理通过顺序卷积
    • US08417751B1
    • 2013-04-09
    • US13289416
    • 2011-11-04
    • Jay Yagnik
    • Jay Yagnik
    • G06F17/10G06F17/15G06K9/64
    • G06F17/15G06K9/6202
    • Convolutions are frequently used in signal processing. A method for performing an ordinal convolution is disclosed. In an embodiment of the disclosed subject matter, an ordinal mask may be obtained. The ordinal mask may describe a property of a signal. A representation of a signal may be received. A processor may convert the representation of the signal to an ordinal representation of the signal. The ordinal mask may be applied to the ordinal representation of the signal. Based upon the application of the ordinal mask to the ordinal representation of the signal, it may be determined that the property is present in the signal. The ordinal convolution method described herein may be applied to any type of signal processing method that relies on a transform or convolution.
    • 卷积经常用于信号处理。 公开了一种执行顺序卷积的方法。 在所公开的主题的实施例中,可以获得顺序掩模。 序数掩码可以描述信号的属性。 可以接收信号的表示。 处理器可以将信号的表示转换为信号的序数表示。 序数掩码可以应用于信号的顺序表示。 基于将序数掩码应用于信号的顺序表示,可以确定信号中存在该属性。 这里描述的顺序卷积方法可以应用于依赖于变换或卷积的任何类型的信号处理方法。
    • 28. 发明授权
    • Learning concepts for video annotation
    • 学习视频注释的概念
    • US08396286B1
    • 2013-03-12
    • US12822727
    • 2010-06-24
    • Hrishikesh AradhyeGeorge TodericiJay Yagnik
    • Hrishikesh AradhyeGeorge TodericiJay Yagnik
    • G06K9/62G06K9/66G06K9/00
    • G06K9/00718G06K9/6262
    • A concept learning module trains video classifiers associated with a stored set of concepts derived from textual metadata of a plurality of videos, the training based on features extracted from training videos. Each of the video classifiers can then be applied to a given video to obtain a score indicating whether or not the video is representative of the concept associated with the classifier. The learning process does not require any concepts to be known a priori, nor does it require a training set of videos having training labels manually applied by human experts. Rather, in one embodiment the learning is based solely upon the content of the videos themselves and on whatever metadata was provided along with the video, e.g., on possibly sparse and/or inaccurate textual metadata specified by a user of a video hosting service who submitted the video.
    • 概念学习模块训练与从多个视频的文本元数据导出的存储的一组概念相关联的视频分类器,该训练基于从训练视频中提取的特征。 然后可以将每个视频分类器应用于给定的视频以获得指示视频是否代表与分类器相关联的概念的分数。 学习过程不需要先验知道任何概念,也不需要由人类专家手动应用培训标签的培训视频。 相反,在一个实施例中,学习仅基于视频本身的内容以及与视频一起提供的任何元数据,例如,由提交的视频托管服务的用户指定的可能稀疏和/或不准确的文本元数据 视频。