会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 23. 发明申请
    • Heat exchange system for a cavitation chamber
    • 空化室换热系统
    • US20060018419A1
    • 2006-01-26
    • US10961353
    • 2004-10-07
    • Ross Tessien
    • Ross Tessien
    • G21B1/00
    • G21B3/00F24V99/00F28D7/0016F28D7/0041F28D7/106F28D21/00G21B1/00G21C1/00G21Y2002/301G21Y2002/302G21Y2002/304G21Y2002/40G21Y2004/30Y02E30/18Y02E30/30Y02E30/40
    • A method and apparatus for regulating the temperature of the cavitation medium for a cavitation chamber is provided. The cavitation medium is pumped through the cavitation chamber through a pair of chamber inlets and an external conduit connecting the two inlets. An external heat exchanger is used to regulate the cavitation medium temperature, the heat exchanger being either directly or indirectly coupled to the conduit. The cavitation medium can be circulated through the heat exchanger during chamber operation or, once the desired cavitation medium temperature is achieved, operation of the circulation system can be suspended. The heat exchanger can be used to lower the temperature of the cavitation medium to a temperature less than the ambient temperature; to withdraw excess heat from the cavitation medium; or to heat the cavitation medium to the desired operating temperature. The heat exchanger can utilize heated heat exchange fluid, cooled heat exchange fluid, thermoelectric coolers, heat sinks, refrigeration systems or heaters. The cavitation medium circulation system can be configured to include a filter and/or a degassing chamber.
    • 提供了一种用于调节空化室的空化介质的温度的方法和装置。 空化介质通过一对腔室入口和连接两个入口的外部管道泵送通过空化室。 外部热交换器用于调节空化介质温度,热交换器直接或间接地连接到导管。 空化介质可以在室操作期间循环通过热交换器,或者一旦达到所需的空化介质温度,就可以暂停循环系统的操作。 热交换器可用于将空化介质的温度降至低于环境温度的温度; 从空化介质中取出多余的热量; 或将空化介质加热到所需的工作温度。 热交换器可以利用加热的热交换流体,冷却的热交换流体,热电冷却器,散热器,制冷系统或加热器。 空化介质循环系统可以被配置为包括过滤器和/或脱气室。
    • 24. 发明申请
    • Method and apparatus for controlling and monitoring temperature differences within a cavitation chamber
    • 用于控制和监测空化室内的温度差的方法和装置
    • US20070253285A1
    • 2007-11-01
    • US11226641
    • 2005-09-14
    • Ross Tessien
    • Ross Tessien
    • B01F11/00
    • G21B3/00B01J19/008B01J19/10B01J2219/0009B01J2219/0871B08B3/12G01N2291/02881Y02E30/18
    • A method and apparatus for forming a temperature difference between two regions within a cavitation chamber is provided. The cavitation chamber is partially filled with cavitation fluid, thereby forming a cavitation fluid free surface which divides the chamber into a first region located above the cavitation fluid free surface and a second region located below the cavitation fluid free surface. The region above the cavitation fluid free surface is heated in order to form the desired temperature difference, heat being provided by a resistive heater or other means. In addition to heating the region above the cavitation fluid free surface, the region below the cavitation fluid free surface can be cooled, for example utilizing a refrigerated container, refrigeration coils, a thermoelectric cooler, or other means. A temperature monitor can be thermally coupled to the first region, the second region, or both.
    • 提供了一种在空化室内形成两个区域之间的温度差的方法和装置。 气蚀室部分地被气蚀流体填充,从而形成一个无气蚀流体的表面,该表面将腔室分成位于空化流体自由表面上方的第一区域和位于空化流体自由表面下方的第二区域。 加热无气蚀流体表面以上的区域以形成所需的温度差,由电阻加热器或其他方式提供热量。 除了加热空化流体自由表面之上的区域之外,可以冷却空化流体自由表面以下的区域,例如利用冷藏容器,制冷盘管,热电冷却器或其它装置。 温度监视器可以热耦合到第一区域,第二区域或两者。
    • 25. 发明申请
    • Method and apparatus for loading a source gas into a cavitation medium
    • 用于将源气体加载到空化介质中的方法和装置
    • US20070248470A1
    • 2007-10-25
    • US11207966
    • 2005-08-19
    • Ross Tessien
    • Ross Tessien
    • F04F1/04
    • B01F11/0266G01N2013/0266
    • A cavitation system and method of use for loading the cavitation medium with a source gas, e.g., a reactant, prior to cavitation is provided. The cavitation system includes a cavitation chamber with suitable cavitation drivers and a pressurized gas source coupled to the chamber. A valve interposed between the source gas and the cavitation chamber controls the reactant loading process. In another aspect, a vacuum system is coupled to the cavitation system for use during degassing. The vacuum system may include a cold trap. Preferably multiple valves are used to couple/de-couple the vacuum system and the gas source to the cavitation system when required, for example as a means of protecting associated pressure gauges. In another aspect, the cavitation chamber and the cavitation medium fill reservoir as well as any coupling conduits in which the cavitation fluid is expected to flow are heated to a temperature greater than the melting temperature of the intended cavitation medium. Preferably the system components that must be heated are located within an oven. Alternately the desired temperature can be reached using localized heaters.
    • 提供了空化系统和用于在空化之前用源气体例如反应物装载空化介质的方法。 空化系统包括具有合适的空化驱动器的空化腔和耦合到腔室的加压气体源。 置于源气体和空化室之间的阀控制反应物装载过程。 在另一方面,真空系统耦合到空化系统以在脱气期间使用。 真空系统可以包括冷阱。 优选地,当需要时,多个阀用于将真空系统和气体源耦合到气穴系统,例如作为保护相关压力计的手段。 在另一方面,空化腔和空化介质填充储存器以及其中空化流体预期流动的任何耦合管道被加热到大于预期空化介质的熔化温度的温度。 优选地,必须加热的系统部件位于烘箱内。 或者,可以使用局部加热器达到所需的温度。
    • 28. 发明申请
    • Magnetic fluid rotation system for a cavitation chamber
    • 用于空化室的磁流体旋转系统
    • US20060159557A1
    • 2006-07-20
    • US11057347
    • 2005-02-14
    • Ross Tessien
    • Ross Tessien
    • F04B53/00
    • B01D19/0036
    • A system for achieving bubble stability within a cavitation chamber is provided. The system includes an impeller assembly, the impeller assembly having at least one impeller blade located within the cavitation chamber. The impeller assembly is magnetically coupled to an external drive system which is used to rotate the impeller, thereby causing bubbles within the cavitation chamber to move toward the impeller's axis of rotation. As a consequence, the bubbles become more stable. Preferably the axis of rotation of the impeller is positioned in a substantially horizontal plane, thus allowing the rotating impeller to counteract the tendency of the bubbles to drift upward and to accumulate on the upper, inner surfaces of the cavitation chamber. The impeller can be rotated continuously throughout the cavitation process or stopped prior to, or during, bubble cavitation. In the latter scenario, the impeller can be stopped, and if desired locked, at a specific rotational position, thus minimizing possible interference between the impeller and the source of the cavitation energy. The impeller can be shaped to correspond to the inner surface of the cavitation chamber, for example spherically or cylindrically, and can utilize multiple impeller blades.
    • 提供了一种用于在气蚀室内实现气泡稳定性的系统。 该系统包括叶轮组件,叶轮组件具有位于空化室内的至少一个叶轮叶片。 叶轮组件磁耦合到用于旋转叶轮的外部驱动系统,从而使空化室内的气泡朝向叶轮的旋转轴线移动。 结果,气泡变得更加稳定。 优选地,叶轮的旋转轴线位于基本上水平的平面中,从而允许旋转叶轮抵消气泡向上漂移并积聚在空化室的上部内表面上的趋势。 叶轮可以在整个空化过程中连续旋转,或在气泡之前或期间停止。 在后一种情况下,叶轮可以停止,并且如果需要锁定在特定的旋转位置,从而最小化叶轮和空化能源之间的可能的干扰。 叶轮可以成形为对应于空化室的内表面,例如球形或圆柱形,并且可以利用多个叶轮叶片。
    • 29. 发明申请
    • Method for stabilizing bubbles within a cavitation chamber
    • 在气蚀室内稳定气泡的方法
    • US20060156924A1
    • 2006-07-20
    • US11047459
    • 2005-01-31
    • Ross Tessien
    • Ross Tessien
    • B01D19/00
    • B01D19/0036
    • A method for achieving bubble stability within a cavitation chamber is provided. At least one impeller is located within the cavitation chamber. By rotating the impeller, bubbles within the cavitation chamber are stabilized at a location near, or along, the impeller's axis of rotation. Preferably the axis of rotation is positioned in a substantially horizontal plane, thus allowing the rotating impeller to counteract the tendency of the bubbles to drift upward and to accumulate on the upper, inner surfaces of the cavitation chamber. The impeller can be rotated continuously throughout the cavitation process or stopped prior to cavitating the bubbles within the cavitation chamber. In the latter scenario, the impeller can be stopped, and if desired locked, at a specific rotational position, thus minimizing possible interference between the impeller and the source of the cavitation energy.
    • 提供了一种在气蚀室内实现气泡稳定性的方法。 至少一个叶轮位于空化室内。 通过旋转叶轮,气蚀室内的气泡稳定在靠近或沿着叶轮的旋转轴线的位置。 优选地,旋转轴线位于基本上水平的平面中,从而允许旋转叶轮抵消气泡向上漂移并积聚在空化室的上表面上的倾向。 叶轮可以在整个空化过程中连续旋转,也可以在空化腔内空泡之前停止。 在后一种情况下,叶轮可以停止,并且如果需要锁定在特定的旋转位置,从而最小化叶轮和空化能源之间的可能的干扰。