会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明申请
    • Robotic Guarded Motion System and Method
    • 机器人保护运动系统和方法
    • US20080009970A1
    • 2008-01-10
    • US11428769
    • 2006-07-05
    • David J. Bruemmer
    • David J. Bruemmer
    • G06F19/00
    • G06N3/008G05D1/0088G05D1/0223G05D2201/0209
    • Robot platforms, methods, and computer readable media are disclosed. The robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for repeating, on each iteration through an event timing loop, the acts of defining an event horizon, detecting a range to obstacles around the robot, and testing for an event horizon intrusion. Defining the event horizon includes determining a distance from the robot that is proportional to a current velocity of the robot and testing for the event horizon intrusion includes determining if any range to the obstacles is within the event horizon. Finally, on each iteration through the event timing loop, the method includes reducing the current velocity of the robot in proportion to a loop period of the event timing loop if the event horizon intrusion occurs.
    • 公开了机器人平台,方法和计算机可读介质。 机器人平台包括感知器,运动器和系统控制器。 系统控制器执行指令,在每次迭代中重复通过事件定时循环,定义事件范围的行为,检测机器人周围的障碍物的范围,以及测试事件水平入侵。 定义事件范围包括确定与机器人的距离与机器人的当前速度成比例,并且测试事件水平线入侵包括确定障碍物的任何范围是否在事件范围内。 最后,在通过事件定时循环的每次迭代中,该方法包括如果发生事件水平入侵,则与事件定时循环的循环周期成比例地降低机器人的当前速度。
    • 22. 发明申请
    • Occupancy Change Detection System and Method
    • 占用变化检测系统及方法
    • US20080009966A1
    • 2008-01-10
    • US11428646
    • 2006-07-05
    • David J. BruemmerDouglas A. Few
    • David J. BruemmerDouglas A. Few
    • G06F19/00
    • G06N3/008G05D1/024G05D1/0274
    • Robot platforms, methods, and computer readable media are disclosed. The robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for producing an occupancy grid map of an environment around the robot, scanning the environment to generate a current obstacle map relative to a current robot position, and converting the current obstacle map to a current occupancy grid map. The instructions also include processing each grid cell in the occupancy grid map. Within the processing of each grid cell, the instructions include comparing each grid cell in the occupancy grid map to a corresponding grid cell in the current occupancy grid map. For grid cells with a difference, the instructions include defining a change vector for each changed grid cell, wherein the change vector includes a direction from the robot to the changed grid cell and a range from the robot to the changed grid cell.
    • 公开了机器人平台,方法和计算机可读介质。 机器人平台包括感知器,运动器和系统控制器。 系统控制器执行用于产生机器人周围的环境的占用网格图的指令,扫描环境以生成相对于当前机器人位置的当前障碍物图,并将当前障碍物图转换为当前占用网格图。 指令还包括在占用网格图中处理每个网格单元。 在每个网格单元的处理中,指令包括将占用网格图中的每个网格单元与当前占用网格图中的对应网格单元进行比较。 对于具有差异的网格单元,指令包括为每个改变的网格单元定义改变向量,其中改变向量包括从机器人到改变的网格单元的方向以及从机器人到改变的网格单元的范围。
    • 23. 发明授权
    • Robotic follow system and method
    • 机器人跟踪系统和方法
    • US07211980B1
    • 2007-05-01
    • US11428743
    • 2006-07-05
    • David J. BruemmerMatthew O. Anderson
    • David J. BruemmerMatthew O. Anderson
    • B64C13/18
    • G05D1/0246G05D1/0274G05D2201/0209
    • Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.
    • 公开了机器人平台,方法和计算机介质。 机器人平台包括感知器,运动器和系统控制器,该系统控制器执行机器人遵循其环境中的目标的指令。 该方法包括接收目标轴承并检测机器人是否被阻挡在前面。 如果机器人在前面被阻塞,则机器人的运动被调整以避免前方最近的障碍物。 如果机器人未被阻挡在前面,则该方法会检测机器人是否被阻挡到目标轴承上,如果是,则将旋转方向设置为与目标轴承相反,并调整旋转速度和平移速度。 如果机器人没有被阻挡到目标轴承上,那么旋转速度被调整成与目标轴承的角度成比例,并且平移速度被调整成与前面最近的障碍物的距离成正比。
    • 24. 发明申请
    • GENERIC ROBOT ARCHITECTURE
    • 一般机器人结构
    • US20080009968A1
    • 2008-01-10
    • US11428729
    • 2006-07-05
    • David J. BruemmerDouglas A. Few
    • David J. BruemmerDouglas A. Few
    • G06F19/00
    • G06N3/008
    • The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes include hardware information from at least one hardware abstractions. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the hardware abstractions.
    • 本发明提供了用于通用机器人结构的方法,计算机可读介质和装置,其提供易于移植到各种机器人平台的框架,并且被配置为提供硬件抽象,通用机器人属性的抽象,环境抽象和机器人行为 。 通用机器人架构包括硬件抽象级别和机器人抽象级别。 硬件抽象级别被配置用于开发定义,监视和控制机器人平台上可用的硬件模块的硬件抽象。 机器人抽象级别被配置为定义机器人属性,并且提供用于从机器人属性构建机器人行为的软件框架。 每个机器人属性包括来自至少一个硬件抽象的硬件信息。 此外,每个机器人属性被配置为基本上将机器人行为与硬件抽象隔离开。
    • 25. 发明申请
    • Autonomous Navigation System and Method
    • 自主导航系统与方法
    • US20080009965A1
    • 2008-01-10
    • US11428637
    • 2006-07-05
    • David J. BruemmerDouglas A. Few
    • David J. BruemmerDouglas A. Few
    • G06F19/00
    • G06N3/008G05D1/0088G05D2201/0209
    • Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.
    • 公开了机器人平台,方法和计算机介质。 机器人平台包括感知器,运动器和系统控制器,其执行用于自动导航机器人的指令。 指令在每次通过事件定时循环的迭代中重复,基于机器人的当前速度来定义事件范围的行为,检测机器人周围的障碍物的范围,通过确定是否存在障碍物的范围来测试事件水平入侵 在事件范围内,并相应调整机器人的旋转和平移速度。 如果入侵发生,旋转速度被当前旋转速度的一定比例改变,该比例减小了距离最近障碍物的范围的比例,并且平移速度被修改为距离最近障碍物的范围的比例。 如果没有入侵,平移速度被设置为速度因子相对于最大速度的比率。
    • 27. 发明授权
    • Robotic intelligence kernel
    • 机器人智能内核
    • US07620477B2
    • 2009-11-17
    • US11428650
    • 2006-07-05
    • David J. Bruemmer
    • David J. Bruemmer
    • G06F19/00
    • G06N3/008G05D1/0088
    • A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
    • 机器人平台包括感知器,运动器和系统控制器。 系统控制器执行包括多级架构和动态自主结构的机器人智能内核(RIK)。 多级架构包括用于定义机器人行为的机器人行为级别,其包括机器人属性和用于定义将预定义决定功能与机器人行为之间的自适应交互混合的行为模块的认知级别。 动态自主结构被配置用于修改操作员干预和机器人举措之间的事务容量,并且可以包括具有至少远程操作模式的多个级别,其被配置为最大化操作者干预并且使机器人主动性最小化,以及被配置为使操作者最小化的自主模式 干预并最大限度地发挥机器人的主动性。 在RIK内至少认知层面包括动态自主结构。
    • 28. 发明申请
    • Robotic Intelligence Kernel
    • 机器人智能内核
    • US20080009967A1
    • 2008-01-10
    • US11428650
    • 2006-07-05
    • David J. Bruemmer
    • David J. Bruemmer
    • G06F19/00
    • G06N3/008G05D1/0088
    • Robot platforms, methods, and computer readable media are disclosed. The robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
    • 公开了机器人平台,方法和计算机可读介质。 机器人平台包括感知器,运动器和系统控制器。 系统控制器执行包括多级架构和动态自主结构的机器人智能内核(RIK)。 多级架构包括用于定义机器人行为的机器人行为级别,其包括机器人属性和用于定义将预定义决定功能与机器人行为之间的自适应交互混合的行为模块的认知级别。 动态自主结构被配置用于修改操作员干预和机器人举措之间的事务容量,并且可以包括具有至少远程操作模式的多个级别,所述远程操作模式被配置为最大化操作者干预并使机器人主动性最小化,以及被配置为使操作者最小化的自主模式 干预并最大限度地发挥机器人的主动性。 在RIK内至少认知层面包括动态自主结构。