会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明授权
    • Gas separation using ultrasound and light absorption
    • 气体分离采用超声波和光吸收
    • US08231707B2
    • 2012-07-31
    • US12242185
    • 2008-09-30
    • Dipen N. Sinha
    • Dipen N. Sinha
    • B01D51/08
    • B01D51/08B01D53/007B01D2257/502B01D2257/504B01D2259/816
    • An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.
    • 描述了从不具有运动部件的气体混合物中分离所选择的气体并且不利用化学处理的装置和方法。 使用超声观察了颗粒与其流体载体的分离。 以类似的方式,分子物质可以与载体物质分离。 还已知光诱导的漂移可以将光吸收物质与载体物质分开。 因此,预期时间脉冲的光吸收与超声波浓度的组合将通过超声波浓度单独显着提高分离效率。 另外,破坏圆柱形声浓缩器的空间对称性降低了浓缩颗粒的空间分布,提高了浓缩效率。
    • 23. 发明申请
    • APPARATUS AND METHOD FOR NONINVASIVE PARTICLE DETECTION USING DOPPLER SPECTROSCOPY
    • 使用多普勒光谱法进行非侵入粒子检测的装置和方法
    • US20120055264A1
    • 2012-03-08
    • US13225750
    • 2011-09-06
    • Dipen N. Sinha
    • Dipen N. Sinha
    • G01F1/66
    • G01F1/663G01F1/704G01F1/74G01N15/02G01N29/036G01N2015/0053G01N2291/017G01N2291/02416
    • An apparatus and method for noninvasively detecting the presence of solid particulate matter suspended in a fluid flowing through a pipe or an oil and gas wellbore are described. Fluid flowing through a conduit containing the particulate solids is exposed to a fixed frequency (>1 MHz) of ultrasonic vibrations from a transducer attached to the outside of the pipe. The returning Doppler frequency shifted signal derived from the scattering of sound from the moving solid particles is detected by an adjacent transducer. The transmitted signal and the Doppler signal are combined to provide sensitive particulate detection. The magnitude of the signal and the Doppler frequency shift are used to determine the particle size distribution and the velocity of the particles. Measurement of the phase shift between the applied frequency and the detected Doppler shifted may be used to determine the direction of motion of the particles.
    • 描述了用于非侵入性地检测悬浮在流过管道或油气井的流体中的固体颗粒物质的存在的装置和方法。 流过包含颗粒固体的管道的流体暴露于来自连接到管外部的传感器的超声振动的固定频率(> 1MHz)。 通过相邻的换能器检测来自移动固体颗粒的声音散射得到的返回多普勒频移信号。 发射信号和多普勒信号被组合以提供敏感的微粒检测。 信号的大小和多普勒频移用于确定粒子的粒度分布和粒子的速度。 所施加的频率和检测到的多普勒频移之间的相移的测量可以用于确定颗粒的运动方向。
    • 24. 发明申请
    • GAS SEPARATION USING ULTRASOUND AND LIGHT ABSORPTION
    • 使用超声波和光吸收的气体分离
    • US20100077919A1
    • 2010-04-01
    • US12242185
    • 2008-09-30
    • Dipen N. Sinha
    • Dipen N. Sinha
    • B01D49/00B01D51/08
    • B01D51/08B01D53/007B01D2257/502B01D2257/504B01D2259/816
    • An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.
    • 描述了从不具有运动部件的气体混合物中分离所选择的气体并且不利用化学处理的装置和方法。 使用超声观察了颗粒与其流体载体的分离。 以类似的方式,分子物质可以与载体物质分离。 还已知光诱导漂移可以将光吸收物质与载体物质分开。 因此,预期时间脉冲的光吸收与超声波浓度的组合将通过超声波浓度单独显着提高分离效率。 另外,破坏圆柱形声浓缩器的空间对称性降低了浓缩颗粒的空间分布,提高了浓缩效率。
    • 25. 发明授权
    • Cylindrical acoustic levitator/concentrator having non-circular cross-section
    • 具有非圆形横截面的圆柱形声音升降器/集中器
    • US06644118B2
    • 2003-11-11
    • US10243429
    • 2002-09-13
    • Gregory KaduchakDipen N. Sinha
    • Gregory KaduchakDipen N. Sinha
    • B01D1706
    • B01D49/006
    • A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow piezoelectric crystal which has been formed with a cylindrical cross-section to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. By deforming the circular cross-section of the transducer, the acoustic force is concentrated along axial regions parallel to the axis of the transducer. The cylinder does not require accurate alignment of a resonant cavity. The concentrated regions of acoustic force cause particles in the fluid to concentrate within the regions of acoustic force for separation from the fluid.
    • 描述了用于悬浮和/或浓缩气溶胶的低功率,廉价的声学设备和在空气或其它流体中直径达数毫米的微粒的小液体/固体样品。 它由市售的中空压电晶体构成,其已经形成有圆柱形横截面,以调谐晶体的呼吸模式共振的谐振频率与气缸的内腔的共振频率。 当内部圆柱形空腔的共振频率与圆柱形压电换能器的呼吸模式共振相匹配时,用于在空腔中建立驻波模式的声学效率高。 通过使换能器的圆形横截面变形,声力沿着平行于换能器轴线的轴向区域集中。 气缸不需要精确对准谐振腔。 浓缩的声力区使流体中的颗粒集中在声力区域内以与流体分离。
    • 29. 发明授权
    • Cylindrical acoustic levitator/concentrator
    • 圆柱形声音升降机/集中器
    • US06467350B1
    • 2002-10-22
    • US09810905
    • 2001-03-15
    • Gregory KaduchakDipen N. Sinha
    • Gregory KaduchakDipen N. Sinha
    • B01D1706
    • B01D49/006
    • A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.
    • 描述了用于悬浮和/或浓缩气溶胶的低功率,廉价的声学设备和在空气或其它流体中直径达数毫米的微粒的小液体/固体样品。 它由市售的中空圆柱形压电晶体构成,其经修改以调节晶体的呼吸模式共振的谐振频率与气缸的内腔的共振频率。 当内部圆柱形空腔的共振频率与圆柱形压电换能器的呼吸模式共振相匹配时,用于在空腔中建立驻波模式的声学效率高。 气缸不需要精确对准谐振腔。 直径大于1毫米的水滴已经相对于重力使用了; 小于1W的输入电力。 也证明了气溶胶颗粒在空气中的浓度。