会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 28. 发明授权
    • Laser array
    • 激光阵列
    • US08259770B2
    • 2012-09-04
    • US12577201
    • 2009-10-11
    • Boaz TaganskyMichael PlotkinCraig Breen
    • Boaz TaganskyMichael PlotkinCraig Breen
    • H01S3/04H01S5/00B41J2/385B41J2/435G01D15/06G03G15/01
    • B41J2/45H01S5/042H01S5/4025
    • Electrophotographic print system, comprising a photosensitive medium, and a laser array being provided with a plurality of laser diodes arranged to emit light onto the photosensitive medium for varying an electrical potential on a surface of the photosensitive medium, and a plurality of heat dissipation diodes, each heat dissipation diode being arranged in proximity to a corresponding laser diode, wherein each laser diode and the corresponding heat dissipation diode are coupled to a common drive circuit and are arranged in opposite current flow directions with respect to each other, so that in use the current flows either through the laser diode or through the heat dissipation diode depending on the current flow direction in the drive circuit.
    • 电子照相打印系统,包括感光介质和激光阵列,其设置有多个激光二极管,所述多个激光二极管被布置成将光发射到感光介质上以改变感光介质的表面上的电位,以及多个散热二极管, 每个散热二极管布置在相应的激光二极管附近,其中每个激光二极管和相应的散热二极管耦合到公共驱动电路并且相对于彼此以相反的电流流动方向布置,使得在使用中 电流根据驱动电路中的电流流动方向通过激光二极管或通过散热二极管流动。
    • 30. 发明申请
    • Light emitting devices and displays with improved performance
    • 具有改进性能的发光器件和显示器
    • US20100051901A1
    • 2010-03-04
    • US12454705
    • 2009-05-21
    • Peter T. KazlasMarshall CoxSeth Coe-SullivanDorai RamprasadJonathan S. SteckelCraig BreenCaroline J. RoushMead Misic
    • Peter T. KazlasMarshall CoxSeth Coe-SullivanDorai RamprasadJonathan S. SteckelCraig BreenCaroline J. RoushMead Misic
    • H01L33/00
    • C09K11/565B82Y20/00B82Y30/00H01L51/5012H05B33/14
    • Light emitting devices and devices with improved performance are disclosed. In one embodiment, a light emitting device includes an emissive material disposed between a first electrode, and a second electrode, wherein the emissive material comprises semiconductor nanocrystals capable of emitting light including a maximum peak emission in the blue region of the spectrum upon excitation, wherein the light emitting device can have a peak external quantum efficiency of at least about 1.0 percent. Also disclosed is a display including at least one light emitting device including an emissive material disposed between a first electrode, and a second electrode, wherein the at least one light emitting device can have a peak external quantum efficiency of at least about 1.0 percent. In another embodiment, a light emitting device includes an emissive material disposed between a first electrode and a second electrode. The emissive material comprises semiconductor nanocrystals capable of emitting light including a maximum peak emission in the blue region of the spectrum upon excitation. The device further includes a first spacer material disposed between the emissive material and the first electrode. In certain embodiments, the device further includes a first material capable of transporting charge disposed between the emissive material and the first electrode, wherein the first spacer material is disposed between the emissive material and the first electrode. In certain embodiments, for example, light emitting devices can have a maximum peak emission in a range from about 380 nm to about 500 nm. In certain embodiments, the light emitting device can have a maximum peak emission peak in the range from about 450 nm to about 490 nm. Displays including light emitting devices are also disclosed.
    • 公开了具有改进性能的发光器件和器件。 在一个实施例中,发光器件包括设置在第一电极和第二电极之间的发光材料,其中发射材料包含能够发射包括在激发的光谱的蓝色区域中的最大峰值发射的光的半导体纳米晶体,其中 发光器件可以具有至少约1.0%的峰值外部量子效率。 还公开了一种显示器,其包括至少一个包括设置在第一电极和第二电极之间的发光材料的发光器件,其中所述至少一个发光器件可以具有至少约1.0%的峰值外部量子效率。 在另一个实施例中,发光器件包括设置在第一电极和第二电极之间的发光材料。 发射材料包括能够发射光的半导体纳米晶体,其包括在激发时在光谱的蓝色区域中的最大峰值发射。 该装置还包括设置在发光材料和第一电极之间的第一间隔物材料。 在某些实施例中,该装置还包括能够传输设置在发射材料和第一电极之间的电荷的第一材料,其中第一间隔物材料设置在发光材料和第一电极之间。 在某些实施例中,例如,发光器件可以具有在约380nm至约500nm范围内的最大峰值发射。 在某些实施方案中,发光器件可具有在约450nm至约490nm范围内的最大峰值发射峰值。 还公开了包括发光器件的显示器。