会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 25. 发明申请
    • MAGNETIC NANOWIRES FOR TCO REPLACEMENT
    • 用于替代TCO的磁性纳米颗粒
    • US20100101829A1
    • 2010-04-29
    • US12258263
    • 2008-10-24
    • Steven VERHAVERBEKEOmkaram NalamasuNety M. Krishna
    • Steven VERHAVERBEKEOmkaram NalamasuNety M. Krishna
    • H01B5/00H05K3/10
    • H01L31/022425G02F1/13439H01B1/02H01B1/08H01L31/022475H01L31/022483H01L31/1884H05K1/097Y02E10/50Y10T29/49155
    • This invention provides an optically transparent conductive layer with a desirable combination of low electrical sheet resistance and good optical transparency. The conductive layer comprises a multiplicity of magnetic nanowires in a plane, the nanowires being aligned roughly (1) parallel to each other and (2) with the long axes of the nanowires in the plane of the layer, the nanowires further being configured to provide a plurality of continuous conductive pathways, and wherein the density of the multiplicity of magnetic nanowires allows for substantial optical transparency of the conductive layer. Furthermore, the conductive layer can include an optically transparent continuous conductive film, wherein the multiplicity of magnetic nanowires are electrically connected to the continuous conductive film. A method of forming the conductive layer on a substrate includes: depositing a multiplicity of magnetic conductive nanowires on the substrate and applying a magnetic field to form the nanowires into a plurality of conductive pathways parallel to the surface of the substrate.
    • 本发明提供了具有低电薄片电阻和良好的光学透明度的期望组合的光学透明导电层。 导电层在平面中包括多个磁性纳米线,纳米线大致(1)彼此平行对准,(2)与该层的平面中的纳米线的长轴对准,纳米线还被配置成提供 多个连续导电路径,并且其中多个磁性纳米线的密度允许导电层的实质的光学透明度。 此外,导电层可以包括光学透明的连续导电膜,其中多个磁性纳米线电连接到连续导电膜。 在衬底上形成导电层的方法包括:在衬底上沉积多个导电纳米线并施加磁场以形成平行于衬底表面的多个导电通路中的纳米线。
    • 27. 发明申请
    • METHOD FOR HIGH VOLUME MANUFACTURING OF THIN FILM BATTERIES
    • 薄膜电池高容量制造方法
    • US20090148764A1
    • 2009-06-11
    • US12257049
    • 2008-10-23
    • Byung Sung KwakNety M. KrishnaKurt EisenbelserWilliam J. DauksherJon Candelaria
    • Byung Sung KwakNety M. KrishnaKurt EisenbelserWilliam J. DauksherJon Candelaria
    • H01M6/18B05D5/12
    • H01M10/0585H01M6/40H01M10/0436H01M10/052H01M2300/0068
    • Concepts and methods are provided to reduce the cost and complexity of thin film battery (TFB) high volume manufacturing by eliminating and/or minimizing the use of conventional physical (shadow) masks. Laser scribing and other alternative physical maskless patterning techniques meet certain or all of the patterning requirements. In one embodiment, a method of manufacturing thin film batteries comprises providing a substrate, depositing layers corresponding to a thin film battery structure on the substrate, the layers including, in order of deposition, a cathode, an electrolyte and an anode, wherein at least one of the deposited layers is unpatterned by a physical mask during deposition, depositing a protective coating, and scribing the layers and the protective coating. Further, the edges of the layers may be covered by an encapsulation layer. Furthermore, the layers may be deposited on two substrates and then laminated to form the thin film battery.
    • 提供了概念和方法,以通过消除和/或最小化常规物理(阴影)掩模的使用来降低薄膜电池(TFB)大批量制造的成本和复杂性。 激光划线和其他可选的物理无掩模图案化技术满足某些或所有图案化要求。 在一个实施例中,制造薄膜电池的方法包括提供衬底,在衬底上沉积与薄膜电池结构相对应的层,所述层按沉积顺序包括阴极,电解质和阳极,其中至少 沉积层中的一个在沉积期间由物理掩模未图案化,沉积保护涂层,以及划刻层和保护涂层。 此外,层的边缘可以被封装层覆盖。 此外,可以将这些层沉积在两个基板上,然后层压以形成薄膜电池。
    • 28. 发明申请
    • NANOCRYSTAL FORMATION
    • 纳米结构
    • US20080135914A1
    • 2008-06-12
    • US11771778
    • 2007-06-29
    • Nety M. KrishnaRalf HofmannKaushal K. SinghKarl J. Armstrong
    • Nety M. KrishnaRalf HofmannKaushal K. SinghKarl J. Armstrong
    • H01L21/28H01L29/788
    • H01L29/7881H01L29/40114H01L29/42332
    • In one embodiment, a method for forming a metallic nanocrystalline material on a substrate is provided which includes exposing a substrate to a pretreatment process, forming a tunnel dielectric layer on the substrate, exposing the substrate to a post-treatment process, forming a metallic nanocrystalline layer on the tunnel dielectric layer, and forming a dielectric capping layer on the metallic nanocrystalline layer. The method further provides forming the metallic nanocrystalline layer having a nanocrystalline density of at least about 5×1012 cm−2, preferably, at least about 8×1012 cm−2. In one example, the metallic nanocrystalline layer contains platinum, ruthenium, or nickel. In another embodiment, a method for forming a multi-layered metallic nanocrystalline material on a substrate is provided which includes forming a plurality of bi-layers, wherein each bi-layer contains an intermediate dielectric layer deposited on a metallic nanocrystalline layer. Some of the examples include 10, 50, 100, 200, or more bi-layers.
    • 在一个实施例中,提供了一种在衬底上形成金属纳米晶体材料的方法,其包括将衬底暴露于预处理工艺,在衬底上形成隧道电介质层,将衬底暴露于后处理工艺,形成金属纳米晶体 并在所述金属纳米晶层上形成介电覆盖层。 该方法进一步提供形成金属纳米晶层,其纳米晶密度为至少约5×10 12 cm -2,优选至少约8×10 12 / > cm -2。 在一个实例中,金属纳米晶层包含铂,钌或镍。 在另一个实施例中,提供了一种在衬底上形成多层金属纳米晶体材料的方法,其包括形成多个双层,其中每个双层包含沉积在金属纳米晶层上的中间介电层。 一些示例包括10,50,100,200或更多的双层。