会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Software for improving the accuracy of machines
    • 提高机器精度的软件
    • US06980881B2
    • 2005-12-27
    • US10644149
    • 2003-08-20
    • Thomas A. GreenwoodThomas W. Pastusak
    • Thomas A. GreenwoodThomas W. Pastusak
    • B25J9/16G05B19/401G06F19/00
    • G05B19/401B25J9/1692G05B2219/39033G05B2219/49207G05B2219/50057
    • Large machines, especially those having working envelopes in excess of fifteen feet, exhibit unacceptable errors because of thermal expansion and mechanical misalignments between the axes. The errors have traditionally been minimized by enclosing the machine in a thermal enclosure, by careful calibration, or by mounting a laser interferometer on each axis. These solutions are costly, may require frequent recalibration, and do not correct for small rotations of one axis relative to another axis due to wear etc. The present invention uses an interferometric laser tracker or a comparable 3D position sensor to measure the position of a retroreflector attached to the end effector, e.g. a machine head when the machine comes to rest. A computer compares the measured position to the desired position according to the machine media, and adds the appropriate correction with trickle feed media statements to move the machine to the correct position prior to further machining.
    • 大型机器,特别是那些工作信封超过十五英尺的机器,由于轴的热膨胀和机械的不对准而表现出不可接受的误差。 传统上通过将机器封装在热封闭中,通过仔细校准,或者通过在每个轴上安装激光干涉仪来将误差降至最低。 这些解决方案是昂贵的,可能需要经常重新校准,并且由于磨损等而不能针对相对于另一个轴的一个轴的小转动进行校正。本发明使用干涉式激光跟踪器或可比较的3D位置传感器来测量后向反射器的位置 连接到末端执行器,例如 当机器休息时机头。 计算机根据机器介质将测量位置与所需位置进行比较,并在进行进一步加工之前将机器加入适当的校正,并将其移动到正确的位置。
    • 12. 发明授权
    • Apparatus for extracting pattern features
    • 用于提取图案特征的装置
    • US5870490A
    • 1999-02-09
    • US697603
    • 1996-08-27
    • Tomoichi TakahashiKazuyoshi TateishiAkinori Watabe
    • Tomoichi TakahashiKazuyoshi TateishiAkinori Watabe
    • G01B11/24G05B19/37G06K9/00G06T1/00G06T7/00G06K9/46
    • G05B19/37G06K9/00201G05B2219/37359G05B2219/39033G05B2219/40374G05B2219/40576
    • An apparatus is presented for extracting configurational features of an object formed by a number of surfaces with a two-dimensional laser pattern. Changes in the shape can be tracked, and speedy three-dimensional measurements are made possible in a small memory area without requiring parameter adjustment. The device comprises a two-dimensional laser pattern generating device which projects laser light in a desired two-dimensional pattern configuration, a three-dimensional position calculating device which synchronizes the timing of the laser light illumination with the timing of the detection of two-dimensional points. Three-dimensional coordinates of a surface point are rapidly calculated, then the surface parameters are determined by the three-dimensional positions of a number of points (three points or more). A pattern information generating device varies the pattern to be projected in accordance with the surface parameters so obtained, and a pattern recognition device controls the movements of a robot in accordance with variations in configuration based on the edge lines, vertexes and other features determined by a number of plane surfaces.
    • 提出一种用于提取由具有二维激光图案的多个表面形成的物体的构造特征的装置。 可以跟踪形状的变化,并且可以在小的存储区域中实现快速的三维测量,而不需要参数调整。 该装置包括以预期的二维图案配置投射激光的二维激光图案生成装置,将激光照明的定时与二维图案的检测的定时同步的三维位置计算装置 积分 快速计算表面点的三维坐标,然后通过多个点(三点或更多点)的三维位置来确定表面参数。 图案信息生成装置根据如此获得的表面参数改变要投影的图案,并且图案识别装置根据基于边缘线,顶点和由其确定的其他特征的配置的变化来控制机器人的移动 平面数量。
    • 13. 发明授权
    • Position and posture adjustment method
    • US10625425B2
    • 2020-04-21
    • US15915404
    • 2018-03-08
    • HONDA MOTOR CO., LTD.
    • Fumihiko Shimazu
    • B25J15/04B25J9/16B25J11/00
    • B25J9/1692B25J9/1697B25J11/005G05B2219/39033Y10S901/09Y10S901/47
    • An objective is to provide a position and posture adjustment method capable of promptly adjusting the position and the posture of a robot with respect to a workpiece while making variations caused by the operator small. The position and posture adjustment method includes provisional teaching step S1, marker installation step S2 of installing a marker having a head cut conical shape in the workpiece, an initial movement step S3 of moving an arm distal end portion such that the irradiated positions of three laser displacement gauges are arranged within the end surface of the marker, posture modification step S4 of moving the arm distal end portion such that the measured values of the three laser displacement gauges become close to one another, approach step S5 of bringing the arm distal end portion close to the marker along the Z axis, alignment step S6 of causing an axis of the arm distal end portion and a marker axis to coincide with each other by moving the arm distal end portion parallel along a plane perpendicular to the Z axis such that the measured values of the three laser displacement gauges become close to one another, and positioning step S7 of adjusting the position of the arm distal end portion by moving the arm distal end portion along the Z axis.
    • 15. 发明申请
    • Calibration of Robot Work Paths
    • 机器人工作路径的校准
    • US20160184994A1
    • 2016-06-30
    • US14818205
    • 2015-08-04
    • Matthew E. Trompeter
    • Matthew E. Trompeter
    • B25J9/16
    • B25J9/1692G05B2219/39033Y10S901/02
    • The calibration device combines a work object with an industrial robot and a robot tool. The work object uses a pair of beam projecting lasers and three plane projecting lasers, the laser beams intersecting at a laser intersecting point. The laser intersection point of the laser beams and laser planes represent the location of the reference coordinate system which is selected to be the origin of the robot path being downloaded from the off-line programming. Once this off-line programming is created, the work object is placed onto the fixture on the manufacturing shop floor in the same place as the CAD environment. The user then manipulates the TCP into position of the laser intersection point and the laser planes. The robot is then manipulated down a first laser with the TCP recording a second point along a first laser beam and recording a third point along the opposing laser beam.
    • 校准装置将工作对象与工业机器人和机器人工具相结合。 工作对象使用一对射束激光器和三个平面投影激光器,激光束在激光交叉点处相交。 激光束和激光平面的激光交叉点表示参考坐标系的位置,该坐标系被选择为从离线编程中下载的机器人路径的原点。 一旦这个离线编程被创建,工作对象被放置在与CAD环境相同的地方的制造车间的夹具上。 然后用户将TCP操作到激光交叉点和激光平面的位置。 然后机器人沿着第一激光器被操纵,其中TCP沿着第一激光束记录第二点,并沿着相对的激光束记录第三点。
    • 17. 发明授权
    • Robotic work object cell calibration method
    • 机器人工作对象单元校准方法
    • US09061421B2
    • 2015-06-23
    • US13385797
    • 2012-03-07
    • Matthew E. Trompeter
    • Matthew E. Trompeter
    • B25J9/16
    • B25J9/1692G05B2219/39033
    • The robotic work object cell calibration method includes a work object or emitter. Initially, placing the work object is placed in a selected position on a fixture or work piece on the shop floor. The work object emits a pair of beam-projecting lasers which intersect at a tool contact point and act as a crosshair. The robot tool is manipulated into the tool contact point. The work object emits four plane-projecting lasers which are used to adjust the roll, yaw, and pitch of the robot tool relative to the tool contact point. The robotic work object cell calibration method of the present invention increases the accuracy of the off-line programming and decreases robot teaching time.
    • 机器人工作对象单元校准方法包括工作对象或发射器。 最初,将工件放置在车间上的夹具或工件上的选定位置。 工作物体发射一对在工具接触点相交并且作为十字准线的投射激光器。 机器人工具被操纵到工具接触点。 工作对象发射四个平面投影激光器,用于调节机器人工具相对于工具接触点的滚动,偏转和俯仰。 本发明的机器人工作对象单元校准方法提高了离线编程的精度,降低了机器人的教学时间。
    • 18. 发明授权
    • Calibration apparatus and process
    • 校准仪器和工艺
    • US07277811B1
    • 2007-10-02
    • US11432011
    • 2006-05-11
    • Bobby J. MarshSteven H. Nichols
    • Bobby J. MarshSteven H. Nichols
    • G01L25/00G01C21/00
    • B25J9/1692B23Q17/22B23Q17/24G05B2219/37275G05B2219/39033
    • The invention discloses differing embodiments of calibration apparatus, and methods of use. In one embodiment, the calibration apparatus may be used to calibrate a tool, positioning system, robot, machine, or device. The calibration apparatus may include a first member adapted to be attached to a tool, positioning system, robot, machine, or device, and two or more reflectors attached to the first member. The reflectors may be adapted to reflect one or more laser beams emitted from a laser tracker system. In such manner, a laser tracker system may be used to determine spatial X, Y, and Z coordinates of the reflectors, and/or to determine angular orientation of the first member. Using the spatial X, Y, and Z coordinate and angular orientation data, a tool, positioning system, robot, machine, or device may be calibrated.
    • 本发明公开了校准装置的不同实施例和使用方法。 在一个实施例中,校准装置可用于校准工具,定位系统,机器人,机器或装置。 校准设备可以包括适于附接到工具,定位系统,机器人,机器或设备的第一构件以及附接到第一构件的两个或更多个反射器。 反射器可以适于反射从激光跟踪器系统发射的一个或多个激光束。 以这种方式,可以使用激光跟踪器系统来确定反射器的空间X,Y和Z坐标,和/或确定第一构件的角度定向。 使用空间X,Y和Z坐标和角度定向数据,可以校准工具,定位系统,机器人,机器或设备。
    • 20. 发明授权
    • Control method for an industrial robot
    • 工业机器人的控制方法
    • US06345213B1
    • 2002-02-05
    • US09700438
    • 2001-02-14
    • Ralf-Gunter GraeserRobert Klingel
    • Ralf-Gunter GraeserRobert Klingel
    • G06F1900
    • B25J9/1692G05B2219/39008G05B2219/39033G05B2219/49206G05B2219/49207Y10S414/13
    • A method provides an exact measurement of the tool center point (TCP) being carried out, preferably in the whole working area of the robot. In this measurement, the robot moves very slowly so that little heat is generated by the driving assemblies and the temperature gradients are as low as possible. The measurement can be made, for example, using a high-precision laser distance and angle measurement system. The measurement is carried out such that a measuring point is moved to working area points and then the deviations of the positions and/or orientations of the measuring point are determined using the laser distance and angle measurement system, i.e. a nominal/actual comparison is made. The TCP can preferably serve as the measuring point. The point must always be selected so that the positioning and orientation deviations of the kinematic chain with respect to the PCT can be determined with sufficient accuracy.
    • 一种方法提供了正在进行的刀具中心点(TCP)的精确测量,优选地在机器人的整个工作区域中。 在此测量中,机器人运动非常缓慢,因此驱动组件产生的热量很小,温度梯度尽可能低。 可以例如使用高精度的激光距离和角度测量系统进行测量。 进行测量,使得测量点移动到工作区域点,然后使用激光距离和角度测量系统确定测量点的位置和/或取向的偏差,即进行标称/实际比较 。 TCP可以优选地用作测量点。 必须始终选择该点,使得可以以足够的精度确定运动链相对于PCT的定位和定向偏差。