会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明申请
    • Method for Privacy-Preserving Order Selection of Encrypted Element
    • 加密元素隐私保护顺序选择方法
    • US20140105385A1
    • 2014-04-17
    • US12965066
    • 2010-12-10
    • Shantanu RaneWei Sun
    • Shantanu RaneWei Sun
    • H04L9/08
    • H04L9/0819H04L9/008H04L2209/46
    • A system and a method select an encrypted element in an encrypted vector according to an order of the encrypted element in the encrypted vector. The selecting is performed in a privacy-preserving manner. Values of the elements of the encrypted vector are scaled, such that the order of the elements in the encrypted vector is preserved, and then permuted to produce a scaled permuted vector. Information in the encrypted domain indicative of an order of elements in the scaled permuted vector is provided to a second processor having a private key. The second processor decrypts the information to determine the index of the encrypted element based on the order of the elements. The encrypted element is obliviously selected based on the index.
    • 系统和方法根据加密向量中加密元素的顺序选择加密向量中的加密元素。 以隐私保护的方式执行选择。 加密矢量的元素的值被缩放,使得保存加密矢量中的元素的顺序,然后被排列以产生缩放的置换向量。 将表示缩放置换向量中的元素的顺序的加密域中的信息提供给具有私钥的第二处理器。 第二处理器根据元素的顺序解密信息以确定加密元素的索引。 基于索引忽略加密元素。
    • 16. 发明授权
    • Method for privacy-preserving computation of edit distance of symbol sequences
    • 符号序列编辑距离的隐私保留计算方法
    • US08625782B2
    • 2014-01-07
    • US12703150
    • 2010-02-09
    • Shantanu RaneWei Sun
    • Shantanu RaneWei Sun
    • H04L9/00
    • H04L9/008H04L2209/46H04L2209/50
    • Embodiments of the invention discloses a system and a method for determining an encrypted edit distance as an encryption of a minimum cost of transformation of a first sequence into a second sequence based on an insertion cost, a deletion cost, and a substitution cost. The method determines recursively a current element of the matrix as an encryption of a minimum of a first element, a second element, and a third element to produce the dynamic programming solution, wherein the first element represents the insertion cost, the second element represents the deletion cost, and the third element represents the substitution costs, and wherein the current element, the first element, the second element, and the third element are homomorphically encrypted with a public key; and selects the dynamic programming solution as the encrypted edit distance, wherein steps of the method are performed by a first processor and a second processor.
    • 本发明的实施例公开了一种用于基于插入成本,删除成本和替代成本来确定加密编辑距离作为第一序列到第二序列的最小转换成本的加密的系统和方法。 该方法递归地确定矩阵的当前元素作为第一元素,第二元素和第三元素的最小值的加密以产生动态规划解决方案,其中第一元素表示插入成本,第二元素表示 删除成本,第三元素表示替代成本,并且其中当前元素,第一元素,第二元素和第三元素被公共密钥同态加密; 并且选择动态编程解决方案作为加密的编辑距离,其中该方法的步骤由第一处理器和第二处理器执行。
    • 17. 发明申请
    • Method for Outsourcing Data for Secure Processing by Untrusted Third Parties
    • 外判不可信第三方安全处理数据的方法
    • US20130340098A1
    • 2013-12-19
    • US13525218
    • 2012-06-15
    • Shantanu RaneWei Sun
    • Shantanu RaneWei Sun
    • G06F21/24G06F15/16
    • H04L63/0428H04L41/069H04L63/0407
    • Data is generated in a client based on events at a client, wherein each event is associated with a first dimension, a second dimension and a quantity. A random value is generated for each interval of the first dimension and each instance of the second dimension. The quantity of each event is modified using the random value to determine a modified quantity. A running total for each interval of the first dimension and each instance of the second dimension is determined using the modified quantities and transmitted to an untrusted third party. An exact result of processing the modified quantities and the running totals by the untrusted third party can then be received and decoded by the client.
    • 基于客户机上的事件在客户端中生成数据,其中每个事件与第一维度,第二维度和数量相关联。 为第一维度和第二维度的每个实例的每个间隔生成随机值。 使用随机值修改每个事件的数量以确定修改的数量。 使用修改的数量确定第一维度的每个间隔和第二维度的每个实例的运行总计并传送到不可信的第三方。 然后可以由客户接收并解码由不可信第三方处理修改的数量和运行总计的确切结果。
    • 19. 发明授权
    • Privacy-preserving probabilistic inference based on hidden Markov models
    • 基于隐马尔可夫模型的隐私保护概率推理
    • US08433892B2
    • 2013-04-30
    • US13076410
    • 2011-03-30
    • Shantanu RaneWei SunManas A. PathakBhiksha Raj
    • Shantanu RaneWei SunManas A. PathakBhiksha Raj
    • H04L29/06
    • H04L9/008G06N7/005H04L2209/46
    • A probability of an observation sequence stored at a client is evaluated securely with respect to a hidden Markov model (HMM) stored at a server. The server determines, for each state of the HMM, an encryption of a log-probability of a current element of the observation sequence. Determines, for each state of the HMM, an encryption of a log-summation of a product of a likelihood of the observation sequence based on a previous element of the observation sequence and a transition probability to the state of the HMM. Determines an encryption of a log-likelihood of the observation sequence for each state as a product of the encryption of a log-summation and an encryption of a corresponding log-probability of the current element of the observation sequence; and determines an encryption of the log-probability of the observation sequence based on the log-likelihood of the observation sequence for each state.
    • 相对于存储在服务器中的隐马尔可夫模型(HMM),安全地评估存储在客户端的观察序列的概率。 对于HMM的每个状态,服务器确定观察序列的当前元素的对数概率的加密。 确定对于HMM的每个状态,基于观测序列的先前元素和HMM状态的转移概率,对观测序列的可能性的乘积的对数加和进行加密。 确定每个状态的观察序列的对数似然度的加密,作为对数求和的加密和观察序列的当前元素的相应对数概率的加密的乘积; 并且基于每个状态的观察序列的对数似然度来确定观察序列的对数概率的加密。
    • 20. 发明申请
    • Privacy-Preserving Probabilistic Inference Based on Hidden Markov Models
    • 基于隐马尔可夫模型的隐私保护概率推理
    • US20120254605A1
    • 2012-10-04
    • US13076418
    • 2011-03-30
    • Wei SunShantanu Rane
    • Wei SunShantanu Rane
    • H04L9/00
    • H04L9/00G09C1/00H04L9/008H04L2209/42
    • Parameters of a hidden Markov model (HMM) are determined by a server based on an observation sequence stored at a client, wherein the client has a decryption key and an encryption key of an additively homomorphic cryptosystem, and the server has only the encryption key. The server initializes parameters of the HMM and updates the parameters iteratively until a difference between a probability of the observation sequence of a current iteration and a probability of the observation sequence of a previous iteration is above a threshold, wherein, for each iteration, the parameters are updated based on an encrypted conditional joint probability of each pair of states given the observation sequence and the parameters of the HMM, wherein the encrypted conditional probability is determining in an encrypted domain using a secure multiparty computation (SMC) between the server and the client.
    • 隐马尔可夫模型(HMM)的参数由服务器基于存储在客户端的观察序列确定,其中客户端具有加密同态密码系统的解密密钥和加密密钥,并且服务器仅具有加密密钥。 服务器初始化HMM的参数并重复更新参数,直到当前迭代的观察序列的概率与先前迭代的观察序列的概率之间的差异高于阈值,其中,对于每次迭代,参数 基于给定观察序列和HMM的参数的每对状态的加密条件联合概率更新,其中加密的条件概率在加密域中使用服务器和客户端之间的安全多方计算(SMC)来确定 。