会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 15. 发明授权
    • System and method for evolutionary clustering of sequential data sets
    • 顺序数据集进化聚类的系统和方法
    • US08930365B2
    • 2015-01-06
    • US11414448
    • 2006-04-29
    • Deepayan ChakrabartiShanmugasundaram RavikumarAndrew Tomkins
    • Deepayan ChakrabartiShanmugasundaram RavikumarAndrew Tomkins
    • G06F7/00G06F17/30G06K9/62
    • G06F17/30705G06K9/6218
    • An improved system and method for evolutionary clustering of sequential data sets is provided. A snapshot cost may be determined for representing the data set for a particular clustering method used and may determine the cost of clustering the data set independently of a series of clusterings of the data sets in the sequence. A history cost may also be determined for measuring the distance between corresponding clusters of the data set and the previous data set in the sequence of data sets to determine a cost of clustering the data set as part of a series of clusterings of the data sets in the sequence. An overall cost may be determined for clustering the data set by minimizing the combination of the snapshot cost and the history cost. Any clustering method may be used, including flat clustering and hierarchical clustering.
    • 提供了一种用于顺序数据集进化聚类的改进的系统和方法。 可以确定用于表示所使用的特定聚类方法的数据集的快照成本,并且可以独立于序列中的数据集的一系列聚类来确定数据集的聚类成本。 还可以确定历史成本用于测量数据集的相应簇之间的距离和数据集序列中的先前数据集之间的距离,以确定数据集的聚类成本,作为数据集的一系列聚类的一部分 序列。 可以通过最小化快照成本和历史成本的组合来确定用于对数据集进行聚类的总体成本。 可以使用任何聚类方法,包括平面聚类和层次聚类。
    • 17. 发明申请
    • System and method for evolutionary clustering of sequential data sets
    • 顺序数据集进化聚类的系统和方法
    • US20070255737A1
    • 2007-11-01
    • US11414448
    • 2006-04-29
    • Deepayan ChakrabartiShanmugasundaram RavikumarAndrew Tomkins
    • Deepayan ChakrabartiShanmugasundaram RavikumarAndrew Tomkins
    • G06F7/00
    • G06F17/30705G06K9/6218
    • An improved system and method for evolutionary clustering of sequential data sets is provided. A snapshot cost may be determined for representing the data set for a particular clustering method used and may determine the cost of clustering the data set independently of a series of clusterings of the data sets in the sequence. A history cost may also be determined for measuring the distance between corresponding clusters of the data set and the previous data set in the sequence of data sets to determine a cost of clustering the data set as part of a series of clusterings of the data sets in the sequence. An overall cost may be determined for clustering the data set by minimizing the combination of the snapshot cost and the history cost. Any clustering method may be used, including flat clustering and hierarchical clustering.
    • 提供了一种用于顺序数据集进化聚类的改进的系统和方法。 可以确定用于表示所使用的特定聚类方法的数据集的快照成本,并且可以独立于序列中的数据集的一系列聚类来确定数据集的聚类成本。 还可以确定历史成本用于测量数据集的相应簇之间的距离和数据集序列中的先前数据集之间的距离,以确定数据集的聚类成本,作为数据集的一系列聚类的一部分 序列。 可以通过最小化快照成本和历史成本的组合来确定用于对数据集进行聚类的总体成本。 可以使用任何聚类方法,包括平面聚类和层次聚类。