会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 14. 发明申请
    • Method and system for determining offering combinations in a multi-product environment
    • 用于在多产品环境中确定提供组合的方法和系统
    • US20070027703A1
    • 2007-02-01
    • US11191081
    • 2005-07-28
    • Jianying HuAleksandra Mojsilovic
    • Jianying HuAleksandra Mojsilovic
    • G06Q99/00
    • G06Q30/02G06Q30/0202G06Q30/0625
    • A multi-product environment is analyzed to identify combinations of products or services which represent strategic offerings of a company. For a multi-product environment and a set of client accounts, a segmentation tree is constructed to identify the offering groups of interest. The tree is first initialized as a root representing all offerings, all clients and an empty offering set. A recursive algorithm is then applied to grow the tree at each node by segmenting the clients based on whether a particular offering is purchased. The selection of the offering to use for segmentation at each node is determined by a mathematical algorithm that considers two factors: 1) the offering should have high pulling power, meaning it is likely to produce high revenue in combination with other offerings, and 2) the offering should be unlikely to cause fragmentation, meaning nodes representing a very small amount of revenue. The algorithm terminates when each leaf node reaches one of the two limits: 1) Representation limit which is reached when a significant portion of revenue is accounted for by offerings in a particular grouping and 2) Significance limit which is reached when the revenue represented by a node is too small to be considered significant. At this point all leaf nodes representing significant revenue are collected as the offering groups.
    • 分析多产品环境,以确定代表公司战略性产品的产品或服务的组合。 对于多产品环境和一组客户帐户,构建分割树来识别感兴趣的产品组。 树首先被初始化为表示所有产品,所有客户端和空提供集的根。 然后应用递归算法来根据是否购买特定产品,通过对客户端进行细分来在每个节点生长树。 在每个节点上选择用于分割的产品是通过考虑两个因素的数学算法来确定的:1)产品应具有较高的牵引力,这意味着与其他产品相结合可能产生高收入,以及2) 该产品不应该导致分散,意味着节点代表的收入非常小。 当每个叶节点达到两个限制之一时,该算法终止:1)当特定分组中的产品占相当一部分收入时所达到的表示限制,以及2)当由a表示的收入达到的意义限制 节点太小,不能被认为是重要的。 在这一点上,所有代表重要收入的叶节点被收集作为提供组。
    • 16. 发明申请
    • METHOD AND SYSTEM FOR DETERMINING OFFERING COMBINATIONS IN A MULTI-PRODUCT ENVIRONMENT
    • 用于确定在多产品环境中提供组合的方法和系统
    • US20080167951A1
    • 2008-07-10
    • US12052977
    • 2008-03-21
    • Jianying HUAleksandra Mojsilovic
    • Jianying HUAleksandra Mojsilovic
    • G06Q10/00G06F17/00
    • G06Q30/02G06Q30/0202G06Q30/0625
    • A multi-product environment is analyzed to identify combinations of products or services which represent strategic offerings of a company. For a multi-product environment and a set of client accounts, a segmentation tree is constructed to identify the offering groups of interest. The tree is first initialized as a root representing all offerings, all clients and an empty offering set. A recursive algorithm is then applied to grow the tree at each node by segmenting the clients based on whether a particular offering is purchased. The selection of the offering to use for segmentation at each node is determined by a mathematical algorithm that considers two factors: 1) the offering should have high pulling power, meaning it is likely to produce high revenue in combination with other offerings, and 2) the offering should be unlikely to cause fragmentation, meaning nodes representing a very small amount of revenue. The algorithm terminates when each leaf node reaches one of the two limits: 1) Representation limit which is reached when a significant portion of revenue is accounted for by offerings in a particular grouping and 2) Significance limit which is reached when the revenue represented by a node is too small to be considered significant. At this point all leaf nodes representing significant revenue are collected as the offering groups.
    • 分析多产品环境,以确定代表公司战略性产品的产品或服务的组合。 对于多产品环境和一组客户帐户,构建分割树来识别感兴趣的产品组。 树首先被初始化为表示所有产品,所有客户端和空提供集的根。 然后应用递归算法来根据是否购买特定产品,通过对客户端进行细分来在每个节点生长树。 在每个节点上选择用于分割的产品是通过考虑两个因素的数学算法来确定的:1)产品应具有较高的牵引力,这意味着与其他产品相结合可能产生高收入,以及2) 该产品不应该导致分散,意味着节点代表的收入非常小。 当每个叶节点达到两个限制之一时,该算法终止:1)当特定分组中的产品占相当一部分收入时所达到的表示限制,以及2)当由a表示的收入达到的意义限制 节点太小,不能被认为是重要的。 在这一点上,所有代表重要收入的叶节点被收集作为提供组。
    • 17. 发明授权
    • Retrieval and matching of color patterns based on a predetermined vocabulary and grammar
    • 基于预定词汇和语法的颜色模式的检索和匹配
    • US06732119B2
    • 2004-05-04
    • US10188687
    • 2002-07-03
    • S. Kicha GanapathyJianying HuJelena KovacevicAleksandra MojsilovicRobert James Safranek
    • S. Kicha GanapathyJianying HuJelena KovacevicAleksandra MojsilovicRobert James Safranek
    • G06F1730
    • G06F17/30262G06F17/3025G06K9/626Y10S707/99932Y10S707/99933Y10S707/99936Y10S707/99945Y10S707/99948
    • The invention provides a perceptually-based system for pattern retrieval and matching, suitable for use in a wide variety of information processing applications. An illustrative embodiment of the system uses a predetermined vocabulary comprising one or more dimensions to extract color and texture information from an information signal, e.g., an image, selected by a user. The system then generates a distance measure characterizing the relationship of the selected image to another image stored in a database, by applying a grammar, comprising a set of predetermined rules, to the color and texture information extracted from the selected image and corresponding color and texture information associated with the stored image. The vocabulary may include dimensions such as overall color, directionality and orientation, regularity and placement, color purity, and pattern complexity and heaviness. The rules in the grammar may include equal pattern, overall appearance, similar pattern, and dominant color and general impression, with each of the rules expressed as a logical combination of values generated for one or more of the dimensions. The distance measure may include separate color and texture metrics characterizing the similarity of the respective color and texture of the two images being compared. The invention is also applicable to other types of information signals, such as sequences of video frames.
    • 本发明提供了一种基于感知的用于模式检索和匹配的系统,适用于各种各样的信息处理应用。 系统的说明性实施例使用包括一个或多个维度的预定词汇表从用户选择的信息信号(例如,图像)中提取颜色和纹理信息。 然后,系统通过将包括一组预定规则的语法应用于从所选择的图像提取的颜色和纹理信息以及相应的颜色和纹理,生成表征所选图像与存储在数据库中的另一图像的关系的距离度量 与存储的图像相关联的信息。 词汇可以包括诸如整体颜色,方向性和取向,规则性和放置,颜色纯度和图案复杂性和沉重性的尺寸。 语法中的规则可以包括相等的模式,整体外观,类似的模式以及主要颜色和一般的印象,其中每个规则表示为为一个或多个维度生成的值的逻辑组合。 距离测量可以包括表征正在比较的两个图像的相应颜色和纹理的相似性的分离的颜色和纹理度量。 本发明也可应用于其他类型的信息信号,例如视频帧序列。
    • 20. 发明授权
    • System and method for measuring image similarity based on semantic meaning
    • 基于语义意义测量图像相似度的系统和方法
    • US07043474B2
    • 2006-05-09
    • US10123334
    • 2002-04-15
    • Aleksandra MojsilovicBernice RogowitzJose Gomes
    • Aleksandra MojsilovicBernice RogowitzJose Gomes
    • G06F17/30
    • G06K9/6215G06F17/30256G06F17/30265G06F19/00G06F19/321G06K9/00664G06K9/46G06K9/726G16H50/20Y10S707/99936Y10S707/99945
    • A method includes deriving a plurality of semantic categories for representing important semantic cues in images, where each semantic category is modeled through a combination of perceptual features that define the semantics of that category and that discriminate that category from other categories; for each semantic category, forming a set of the perceptual features comprising required features and frequently occurring features; comparing an image to said semantic categories; and classifying said image as belonging to one of said semantic categories if all of the required features and at least one of the frequently occurring features for that semantic category are present in said image. A database contains image information, where the image information includes at least one of already classified images, network locations of already classified images and documents containing already classified images. The database is searched for images matching an input query, comprising, e.g., an image, text, or both.
    • 一种方法包括导出用于表示图像中的重要语义线索的多个语义类别,其中通过定义该类别的语义并将该类别与其他类别区分开的知觉特征的组合来建模每个语义类别; 对于每个语义类别,形成包括所需特征和经常出现的特征的感知特征的集合; 将图像与所述语义类别进行比较; 以及如果所述语义类别中的所有所需特征和所述经常出现的特征中的至少一个存在于所述图像中,则将所述图像分类为属于所述语义类别之一。 数据库包含图像信息,其中图像信息包括已经分类的图像,已经分类的图像的网络位置和包含已经分类的图像的文档中的至少一个。 搜索数据库以匹配输入查询的图像,包括例如图像,文本或两者。