会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 14. 发明授权
    • Nanoparticle-based all-optical sensors
    • 基于纳米粒子的全光学传感器
    • US06778316B2
    • 2004-08-17
    • US10280481
    • 2002-10-24
    • Nancy J. HalasSurbhi LalPeter NordlanderJoseph B. JacksonCristin Erin Moran
    • Nancy J. HalasSurbhi LalPeter NordlanderJoseph B. JacksonCristin Erin Moran
    • G02B2600
    • G01N21/658B82Y15/00C23C18/1851G01N21/7703Y10S977/954
    • The present invention provides a sensor that includes an optical device as a support for a thin film formed by a matrix containing resonant nanoparticles. The nanoparticles may be optically coupled to the optical device by virtue of the geometry of placement of the thin film. Further, the nanoparticles are adapted to resonantly enhance the spectral signature of analytes located near the surfaces of the nanoparticles. Thus, via the nanoparticles, the optical device is addressable so as to detect a measurable property of a sample in contact with the sensor. The sensors include chemical sensors and thermal sensors. The optical devices include reflective devices and waveguide devices. Still further, the nanoparticles include solid metal particles and metal nanoshells. Yet further, the nanoparticles may be part of a nano-structure that further includes nanotubes.
    • 本发明提供了一种传感器,其包括作为由含有共振纳米颗粒的基体形成的薄膜的支撑体的光学装置。 由于薄膜的放置几何形状,纳米颗粒可以与光学器件光耦合。 此外,纳米颗粒适于共振地增强位于纳米颗粒表面附近的分析物的光谱特征。 因此,通过纳米颗粒,光学器件是可寻址的,以便检测与传感器接触的样品的可测量特性。 传感器包括化学传感器和热传感器。 光学器件包括反射器件和波导器件。 此外,纳米颗粒包括固体金属颗粒和金属纳米壳。 此外,纳米颗粒可以是还包括纳米管的纳米结构的一部分。
    • 15. 发明授权
    • Nanorice particles: hybrid plasmonic nanostructures
    • 纳米粒子:杂化等离子体纳米结构
    • US07790066B2
    • 2010-09-07
    • US12281103
    • 2007-03-02
    • Hui WangDaniel BrandlFei LePeter NordlanderNancy J. Halas
    • Hui WangDaniel BrandlFei LePeter NordlanderNancy J. Halas
    • H01B1/22H01B1/02B32B5/16
    • B82B1/00B82B3/00B82Y30/00B82Y40/00Y10T428/2991Y10T428/2993
    • A new hybrid nanoparticle, i.e., a nanorice particle, which combines the intense local fields of nanorods with the highly tunable plasmon resonances of nanoshells, is described herein. This geometry possesses far greater structural tunability than previous nanoparticle geometries, along with much larger local field enhancements and far greater sensitivity as a surface plasmon resonance (SPR) nanosensor than presently known dielectric-conductive material nanostructures. In an embodiment, a nanoparticle comprises a prolate spheroid-shaped core having a first aspect ratio. The nanoparticle also comprises at least one conductive shell surrounding said prolate spheroid-shaped core. The nanoparticle has a surface plasmon resonance sensitivity of at least 600 nm RIU−1. Methods of making the disclosed nanorice particles are also described herein.
    • 本文描述了将纳米棒的强局部场与纳米壳的高度可调谐等离子体共振组合的新的混合纳米颗粒,即纳米颗粒。 该几何具有比以前的纳米颗粒几何形状更大的结构可调性,以及比目前已知的介电导电材料纳米结构更大的局部场增强和比表面等离子体共振(SPR)纳米传感器更大的灵敏度。 在一个实施方案中,纳米颗粒包含具有第一纵横比的扁球状球形芯。 纳米颗粒还包括围绕所述扁球状球形芯的至少一个导电壳。 纳米颗粒具有至少600nm RIU-1的表面等离子体共振灵敏度。 本文还描述了制备所公开的纳米微粒的方法。
    • 17. 发明授权
    • All optical nanoscale sensor
    • 所有光学纳米级传感器
    • US08045152B2
    • 2011-10-25
    • US11762430
    • 2007-06-13
    • Nancy J. HalasDon H. JohnsonSandra Whaley BishnoiCarly S. LevinChristopher John RozellBruce R. Johnson
    • Nancy J. HalasDon H. JohnsonSandra Whaley BishnoiCarly S. LevinChristopher John RozellBruce R. Johnson
    • G01J3/44
    • G01N21/658G01N21/80
    • A composition comprising a nanoparticle and at least one adsorbate associated with the nanoparticle, wherein the adsorbate displays at least one chemically responsive optical property. A method comprising associating an adsorbate with a nanoparticle, wherein the nanoparticle comprises a shell surrounding a core material with a lower conductivity than the shell material and the adsorbate displays at least one chemically responsive optical property, and engineering the nanoparticle to enhance the optical property of the adsorbate. A method comprising determining an optical response of an adsorbate associated with a nanoparticle as a function of a chemical parameter, and parameterizing the optical response to produce a one-dimensional representation of at least a portion of a spectral window of the optical response in a high dimensional vector space.
    • 一种组合物,其包含纳米颗粒和与所述纳米颗粒相关联的至少一种被吸附物,其中所述被吸附物显示出至少一种化学响应的光学性质。 一种包括使被吸附物与纳米颗粒缔合的方法,其中所述纳米颗粒包括围绕具有比所述壳材料更低导电性的核心材料的壳体,并且所述被吸附物显示出至少一种化学响应的光学性质,并且设计所述纳米颗粒以提高所述纳米颗粒的光学性质 被吸附物。 一种方法,包括根据化学参数确定与纳米颗粒相关联的被吸附物的光学响应,以及参数化所述光学响应以产生光响应的光谱窗口的至少一部分的高维度的一维表示 三维向量空间。
    • 19. 发明授权
    • Method for scalable production of nanoshells using salt assisted purification of intermediate colloid-seeded nanoparticles
    • 使用中间胶体接种纳米粒子的盐辅助纯化可扩展生产纳米壳的方法
    • US06908496B2
    • 2005-06-21
    • US10335993
    • 2003-01-02
    • Nancy J. HalasRobert Kelley Bradley
    • Nancy J. HalasRobert Kelley Bradley
    • B22F1/00B22F1/02B01D61/14
    • B82Y30/00B22F1/0022B22F1/025
    • A method for purifying a suspension containing colloid-seeded nanoparticles and excess colloids is provided that includes adding to the suspension a filter aid comprising a salt. The method further includes filtering the suspension with a filter of a pore size intermediate between the average colloid-seeded nanoparticle size and the average excess colloid size, so as to form a retentate that includes the majority of the colloid-seeded nanoparticles and a filtrate that includes the majority of the excess colloids. Still further, the method includes collecting the retentate. The method may be incorporated into a method of making metallized nanoparticles, such as nanoshells, by reduction of metal ions onto the purified colloid-seed nanoparticles so as to form the metallized nanoparticles.
    • 提供了一种用于纯化含有胶体接种的纳米颗粒和过量胶体的悬浮液的方法,其包括向悬浮液中加入包含盐的助滤剂。 该方法还包括用平均胶体接种的纳米颗粒尺寸和平均过量胶体尺寸之间的中等孔径的过滤器过滤悬浮液,以形成包含大部分胶体接种的纳米颗粒的保留物和滤液, 包括大部分过量胶体。 此外,该方法包括收集滞留物。 该方法可以通过将金属离子还原到纯化的胶体 - 种子纳米颗粒上以形成金属化纳米颗粒而被并入制备金属化纳米颗粒(例如纳米壳)的方法中。