会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明申请
    • Device for determining interference region of robot
    • 用于确定机器人的干扰区域的装置
    • US20050055134A1
    • 2005-03-10
    • US10933432
    • 2004-09-03
    • Mitsuhiro OkudaHirokazu Fuchigami
    • Mitsuhiro OkudaHirokazu Fuchigami
    • B25J19/06B25J9/16G05B19/4061G05B19/4068G06F19/00
    • G05B19/4061B25J9/1666Y02P90/265
    • A device for determining an interference region of a robot, capable of determining an interference region/non-interference region and the like on an off-line layout space without difficulty. Geometric data of a robot and peripheral objects is read from a CAD system or the like to be displayed in the form of a layout display, to thereby form a cage region. An initial occupied region is found by calculating a three-dimensional position of each arm at an initial position. An operation simulation is run, and the tree-dimensional positions are repeatedly calculated, thereby finding the aggregate sum of the occupied region. After the robot is moved, a total occupied region G, an overlapping region H, a protruding region K, a non-occupied region M and the like are displayed in different colors, to thereby perform layout correction of a peripheral object, a change of the cage region, etc. It is also possible to judge the presence or absence of the overlapping region H/protruding region K and to search “a hidden non-occupied region” by way of a sectional display in which points A, B and C are designated.
    • 一种用于确定机器人的干扰区域的装置,其能够在离线布局空间上难以确定干扰区域/非干扰区域等。 从CAD系统等读取机器人和周边物体的几何数据,以布局显示的形式显示,从而形成笼状区域。 通过计算每个臂在初始位置的三维位置来找到初始占用区域。 运行运算模拟,重复计算树维位置,从而求出占用区域的总和。 在移动机器人之后,以不同的颜色显示总占用区域G,重叠区域H,突出区域K,非占用区域M等,从而进行外围物体的布局校正, 笼状区域等。还可以判断重叠区域H /突出区域K的存在或不存在,并且通过分段显示来搜索“隐藏的非占用区域”,其中点A,B和C 被指定。
    • 13. 发明授权
    • Operation line tracking device using sensor
    • 操作线跟踪装置采用传感器
    • US06445979B1
    • 2002-09-03
    • US09705885
    • 2000-11-06
    • Toshihiko InoueMitsuhiro OkudaAkihiro Terada
    • Toshihiko InoueMitsuhiro OkudaAkihiro Terada
    • G05B1500
    • B25J9/1684G05B2219/37009G05B2219/4719
    • An operation line tracking device for a robot for performing an operation with a tool mounted on the robot while tracking an operation line using a sensor wherein a detection failure of the sensor is restored by automatically changing or resetting a detecting condition of the sensor when the sensor fails in detecting the operation line. If a detection failure occurs for a cause of excessive or too small quantity of light impinged on light receiving elements of a laser sensor, a laser output intensity is automatically changed. If a detection failure occurs for a cause of basing of the quantity of the impinged light, an orientation of the laser sensor is automatically adjusted. If a detection failure occurs for a cause of biasing of position of the operation line in the visual field of the laser sensor, the position of the laser sensor is automatically adjusted. If a detection failure occurs for a cause of detection of an unexpected line, an algorithm for detecting the operation line is replaced with another one. Thus, the detecting condition is automatically changed or reset in accordance with the cause of the detection failure, and the tracking operation of the robot is automatically restarted.
    • 一种用于机器人的操作线跟踪装置,用于使用安装在机器人上的工具执行操作,同时使用传感器跟踪操作线,其中当传感器的传感器自动改变或重置传感器的检测条件时,传感器的检测故障恢复 未能检测到操作线。 如果因激光传感器的光接收元件入射过多或过少的光线而导致检测失败,则激光输出强度自动变化。 如果由于撞击光量的基础而发生检测故障,则激光传感器的方位自动调整。 如果在激光传感器的视野中对操作线的位置偏置的原因发生检测失败,则自动调整激光传感器的位置。 如果检测到意外行的检测失败,则用另一个检测操作线的算法进行替换。 因此,根据检测失败的原因自动地改变或复位检测条件,并且机器人的跟踪操作被自动重启。
    • 15. 发明授权
    • Correction data checking system for rebots
    • 修复数据检查系统
    • US07149602B2
    • 2006-12-12
    • US10954606
    • 2004-10-01
    • Atsushi WatanabeMitsuhiro Okuda
    • Atsushi WatanabeMitsuhiro Okuda
    • G06F19/00
    • B25J9/1684G05B2219/4705
    • Provided is a correction data checking system, for robots, which makes it easy to reveal the cause of a machining defect. A laser machining head and a distance sensor or a sensor for detecting a work line are attached to the distal end of a robot arm. A robot is driven based on a teaching program, and a copying control technique is implemented based on information sent from the sensor so that the distance between the laser machining head and a workpiece will be equal to a set value. A path of taught positions of the laser machining head and a path of actual positions thereof are displayed in comparison with each other on a display of a teaching console or the like. Moreover, the difference between the taught position and actual position is calculated and displayed. As both the position commanded by the teaching program and the actual position derived from the copying control technique are displayed, if a machining defect occurs, the machining defect is checked to see if it is a problem attributable to the sensor or a problem attributable to the workpiece or a jig. The cause of the machining defect is then revealed. Consequently, the cause of a machining defect can be quickly revealed and dealt with at a working site.
    • 提供了一种用于机器人的校正数据检查系统,其易于揭示加工缺陷的原因。 激光加工头和距离传感器或用于检测工作线的传感器安装在机器人手臂的远端。 基于教学程序驱动机器人,并且基于从传感器发送的信息实现复印控制技术,使得激光加工头与工件之间的距离将等于设定值。 激光加工头的教导位置的路径和实际位置的路径在教学控制台等的显示器上相互比较地显示。 此外,计算并显示教导位置和实际位置之间的差异。 由于显示了由教学程序命令的位置和从复制控制技术导出的实际位置,如果发生加工缺陷,则检查加工缺陷,看是否是由传感器引起的问题或归因于 工件或夹具。 然后揭示加工缺陷的原因。 因此,加工缺陷的原因可以在工作现场快速揭示和处理。
    • 16. 发明申请
    • Processing system
    • 处理系统
    • US20050143861A1
    • 2005-06-30
    • US11019466
    • 2004-12-23
    • Atsushi WatanabeMitsuhiro OkudaYoshitake Furuya
    • Atsushi WatanabeMitsuhiro OkudaYoshitake Furuya
    • B25J13/08B25J9/16G05B19/42G06F19/00
    • B25J9/1684G05B2219/45057
    • A processing system for stably processing a workpiece even if the shape of the workpiece changes every production lot of the workpiece, or by a change of the workpiece. The distance between the workpiece and an end of a nozzle of a laser machining head is measured by a distance sensor. A data correcting value ΔZ′mn is calculated using a measured distance ΔZrn at each teaching point and a set gap value ΔZs (step S6-S15). By using ΔZ′mn, the data of the teaching points are corrected to new data of the teaching points of the program (step S16-S19). The distance between the workpiece and the end of the nozzle of the laser machining head does not become larger because the teaching points of the processing program are corrected every time when the workpiece is processed. The interference between the workpiece and the head may be prevented and the processing may be stably implemented because the amount of correction becomes smaller when the position of the head is corrected during the processing.
    • 即使工件的形状改变工件的每个生产批次,也可以通过工件的变化来稳定地处理工件的处理系统。 通过距离传感器测量工件与激光加工头的喷嘴端部之间的距离。 使用每个教导点处的测量距离DeltaZrn和设定的间隙值DeltaZs来计算数据校正值DeltaZ'mn(步骤S6〜15)。 通过使用DeltaZ'mn,将教学点的数据校正为程序的教学点的新数据(步骤S 16 -S 19)。 激光加工头部的工件与喷嘴的端部之间的距离不会变大,这是因为每当加工工件被处理时校正处理程序的教导点。 可以防止工件和头部之间的干涉,并且可以稳定地执行处理,因为在处理期间校正头部的位置时校正量变小。
    • 18. 发明授权
    • Tracking control method for robot with weaving action
    • 机器人跟踪控制方法
    • US5887122A
    • 1999-03-23
    • US572622
    • 1995-12-14
    • Fumikazu TerawakiMitsuhiro Okuda
    • Fumikazu TerawakiMitsuhiro Okuda
    • B25J9/10B23K9/095B23K9/12B23K9/127B25J13/08G05B19/4093G05D3/12G01N21/86
    • B23K9/1274
    • A method of controlling a robot to perform a weaving action and a tracking action using a non-contact sensor. When a weaving start command with a condition of a cycle Tw is issued, a laser sensor starts scanning in a cycle Tw/2n in synchronism with the start of weaving action, and outputs sensor data for every scanning time to be stored in a memory. After starting the weaving action, the robot performs a weaving action with a welding line as a reference path, until the tool reaches the weaving extreme (Sm, Sn+m, S2n+m, . . . ) or the termination of the weaving according to the weaving condition. Since a timed relationship between the weaving action and the scanning action of the laser sensor is known, the robot position corresponding to detection data can be calculated, based on which it is possible to successively determine a target position of the robot movement by adding a weaving amount for each detection point. The weaving action is synchronized with the scanning of the laser sensor every time the robot reaches the position of the weaving extreme Sm, Sn+m, . . . to pause and the weaving action is continued tracing the welding line as a reference path.
    • 一种使用非接触传感器控制机器人执行织造动作和跟踪动作的方法。 当发出具有循环Tw的条件的织造开始命令时,激光传感器以与编织动作开始同步的循环Tw / 2n开始扫描,并且将每个扫描时间的传感器数据输出以存储在存储器中。 在开始织造动作之后,机器人以焊接线作为基准路径进行编织动作,直到工具达到编织极限(Sm,Sn + m,S2n + m ...)或编织的终止为止 到织造条件。 由于织造动作与激光传感器的扫描动作之间的定时关系是已知的,因此可以计算与检测数据对应的机器人位置,由此可以通过添加编织来连续地确定机器人移动的目标位置 每个检测点的数量。 每当机器人到达编织极限Sm,Sn + m的位置时,编织动作与激光传感器的扫描同步。 。 。 暂停,织造动作继续追踪焊接线作为参考路径。
    • 19. 发明授权
    • Arc welding control method for a welding robot
    • 焊接机器人电弧焊接控制方法
    • US5486679A
    • 1996-01-23
    • US284474
    • 1994-08-04
    • Masayuki HamuraMitsuhiro OkudaYuuki Makihata
    • Masayuki HamuraMitsuhiro OkudaYuuki Makihata
    • B23K9/00B23K9/06B23K9/067B23K9/095B23K9/12
    • B23K9/0672
    • An arc welding control method for a welding robot wherein a welding current and a welding voltage are controlled at the start of arc welding so as to prevent the formation of a molten metal pool. When arc start is instructed, a welding command voltage E and a welding command current I are set to initial values E0 and I0, respectively (S4). The welding command voltage E is gradually increased until an arc is generated (S6). When an arc is generated, the welding command voltage E and the welding command current I are set to the stopped-state voltage Es and the stopped-state current Is of the robot, respectively (S9). Thereafter, as robot acceleration processing progresses, the welding command voltage E and current I are gradually increased with increase in the robot moving speed (S11). When a robot acceleration time has passed, the welding command voltage E and the welding command current I are set to the normal welding voltage Ec and the normal welding current Ic, respectively.
    • PCT No.PCT / JP93 / 01708 Sec。 371日期:1994年8月4日 102(e)日期1994年8月4日PCT提交1993年11月22日PCT公布。 公开号WO94 / 13423 日期1994年6月23日。一种焊接机器人的电弧焊接控制方法,其中在电弧焊接开始时控制焊接电流和焊接电压,以防止熔融金属池的形成。 当指示电弧启动时,焊接指令电压E和焊接指令电流I分别设定为初始值E0和I0(S4)。 焊接指令电压E逐渐增加,直到产生电弧(S6)。 当产生电弧时,焊接指令电压E和焊接指令电流I分别设定为机器人的停止状态电压Es和停止状态电流Is(S9)。 此后,当机器人加速处理进行时,随着机器人移动速度的增加,焊接指令电压E和电流I逐渐增加(S11)。 当机器人加速时间过去时,焊接指令电压E和焊接指令电流I分别设定为正常焊接电压Ec和正常焊接电流Ic。